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Abstract
As the transportation sector undergoes three major transformations—electrification, shared/on-demand mobility, and
automation—there are new challenges to analyzing the impacts of these trends on both the transportation system and the
power sector. Most models that analyze the requirements of fleets of shared autonomous electric vehicles (SAEVs) operate
at the scale of an urban region, or smaller. A quadratically constrained, quadratic programming problem is formulated,
designed to model the requirements of SAEVs at a national scale. The size of the SAEV fleet, the necessary charging infra-
structure, the fleet charging schedule, and the dispatch required to serve demand for trips in a region are treated as decision
variables. By minimizing both the amortized cost of the fleet and chargers as well as the operational costs of charging, it is
possible to explore the coupled interactions between system design and operation. To apply the model at a national scale,
key complications about fleet operations are simplified; but a detailed agent-based regional simulation model to parameterize
those simplifications is leveraged. Preliminary results are presented, finding that all mobility in the United States (U.S.) cur-
rently served by 276 million personally owned vehicles could be served by 12.5 million SAEVs at a cost of $ 0.27/vehicle-mile
or $ 0.18/passenger-mile. The energy requirements for this fleet would be 1142 GWh/day (8.5% of 2017 U.S. electricity
demand) and the peak charging load 76.7 GW (11% of U.S. power peak). Several model sensitivities are explored, and it is
found that sharing is a key factor in the analysis.

The transportation sector represents the fastest-growing
segment of the world’s greenhouse gas (GHG) emissions,
with cars accounting for 8.7% of global energy-related
carbon dioxide emissions in 2013, and car sales set to
more than double by 2050 (1). In 2017, the transporta-
tion sector became the largest emitter of greenhouse gases
in the United States (U.S.), overtaking emissions from
the electric power industry (2). Transportation, therefore,
represents one of the primary challenges to achieving
deep decarbonization of the U.S. economy (3, 4).

Plug-in electric vehicles (PEVs) have emerged as a
market-ready technology with the potential to dramati-
cally reduce the carbon intensity of private transporta-
tion (5, 6). Prior research has proven the capability of
PEVs to meet the travel needs of the majority of drivers
in the U.S. (7, 8). Nine U.S. states (California,
Connecticut, Maryland, Massachusetts, New Jersey,
New York, Oregon, Rhode Island, and Vermont) have
established zero-emission vehicle mandates which

combined will lead to deployment of 12 million vehicles,
mostly PEVs, in the U.S. by 2030 (9–11).

Simultaneously, other important trends are emerging
in the transportation sector. This study attempts to align
these trends in a coupled evaluation of electric vehicles
with shared autonomous on-demand mobility services.
In the remainder of the introduction, future trends in
transportation are examined and their potential impact
on electrification is discussed. This is followed by an
overview of analytical approaches that have been
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employed to model PEV usage which are drawn upon
for this work.

Future Trends in Transportation

Automation and Shared Mobility. The transportation sector
is transforming through the introduction of on-demand
mobility and through vehicle automation (12). Increased
use of smartphone-enabled shared mobility services
through transportation network companies (TNCs) such
as Uber and Lyft, are already implicated in reductions in
private vehicle ownership (13). Automation, too, may
result in significant changes in how people use vehicles
and their associated energy consumption. Self-driving
vehicles are already on the roads, serving passengers in
the U.S. without a human backup driver in the vehicle
(14). Synergy among these ‘‘three revolutions’’ could
result in deep GHG reductions (15, 16, 17).

However, adoption of PEVs has been relatively slow
for several reasons, including technological uncertainty,
slow charging, range anxiety, and higher capital costs
compared with other types of vehicle (18, 19). The lead-
ing developer of vehicle automation technology, Waymo,
has entered an agreement to purchase 20,000 PEVs by
2020 (20). While there is still a great deal of uncertainty
around the impact that automated vehicles (AVs) will
have on the transportation system in the coming decades,
there is little doubt that they will soon be a part of the
transportation system and could dramatically disrupt
conventional modes of mobility (21, 22). There is a wide
variety of business models that could make use of AVs
(23). The success of these business models will depend on
their relative cost structures, regulatory burden, con-
sumer acceptance, and a host of other factors (24–26).
However, there is growing consensus that without shar-
ing rides, that is, more than one passenger per vehicle,
the end result of vehicle automation could increase unde-
sirable outcomes like vehicle miles traveled, congestion,
energy consumption, and emissions (16, 27, 28).

Shared automated electric vehicles (SAEVs) could
offer on-demand transportation in electric and self-
driving cars similar to the service provided by current
TNCs but likely at much lower cost and carbon intensity
(29). Because each SAEV need only have enough seats
(known as ‘‘right-sizing’’) and battery range for the trip
requested and charging can be split over many short
periods in between trips, the shared mobility paradigm
could enable the use of smaller cars with shorter battery
range, thus overcoming the barriers of slow charging
speed and high capital cost (17, 30, 31).

Furthermore, because shared vehicles typically travel
many more miles annually than private vehicles, deploy-
ment of SAEVs would increase the per-vehicle GHG
reductions relative to private ownership and spread the

capital costs over more miles. SAEVs deployed in 2030
could reduce GHG emissions per mile by more than
90% relative to privately owned conventional vehicles
while substantially increasing cost-effectiveness (17). A
recent Rocky Mountain Institute report predicted that
the marginal cost of SAEVs could fall below that of con-
ventional private vehicles leading to market dominance
by 2050 (32). It is possible that such cost savings will
increase overall vehicle miles traveled as a result of
induced demand, but some studies have predicted that
the efficiency gains would outweigh any resulting poten-
tial increases in emissions (12).

Charging Infrastructure and Vehicle Grid Integration. Public
PEV charging infrastructure is a critical component to
accelerate the adoption of PEVs (33–35). However, there
is a weak business case for the private sector to invest in
chargers in the context of personally owned PEVs (36).
Governments across the world have therefore initiated
campaigns to support the planning and installation of
charging infrastructure to varying degrees (11, 37–40).

PEV charging introduces a significant new load to an
electric system that is already challenged to meet peak
electricity demand multiple times each year, as well as
incorporate increasing levels of intermittent wind and
solar generation. As intermittent renewable capacity
increases, the incidence of renewable energy (RE) curtail-
ment increases which raises the overall system cost of
supplying electricity (41). In addition, some utilities must
meet a renewable energy production standard to satisfy
regulatory mandates, so renewable curtailment forces
them to either acquire more RE or introduce sources of
grid flexibility to relieve the curtailment (42).

Many studies have assessed the benefits of coordi-
nated PEV charging on electric power system operations,
(43–45). If charging is properly coordinated, it can pro-
vide a dual benefit of decarbonizing transportation while
lowering the capital costs for widespread renewables
integration and reducing the need for energy storage
(46–49). The capability of PEVs to enhance the integra-
tion of renewable energy sources, including wind and
solar, into the existing power grid has been widely dis-
cussed (50–61).

Analytical Approaches

PEV models typically fall into two groups: trip-based
models and activity-based models. Trip-based models
typically summarize or infer travel patterns from travel
survey data and use them to characterize the need for
PEV charging infrastructure and the temporal opportu-
nities to charge (62–64). Such approaches cannot account
for the individual mobility constraints of travelers and
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they typically require an assumption that charging infra-
structure is unlimited.

The most common form of activity-based PEV mod-
els make use of travel diaries from surveys or GPS data
logging which are then provided as input to energy and
charging simulations that estimate the energy consump-
tion and state of charge of the PEV batteries and there-
fore the necessity or propensity to recharge at the
conclusion of trips (65–68).

Agent-based models—a subset of activity-based
models—treat travelers individually and require a repre-
sentation of each individual’s activity schedule to model
the travel necessary to engage in those activities. Several
previous studies have employed agent-based modeling
techniques to explore the feasibility of a fleet of auto-
mated taxis operating in an urban environment (24, 29,
69–74). Building on these results, Bauer et al. developed
an agent-based model to predict the system costs of a
fleet of SAEVs operating in New York City (NYC) and
design a heuristic process to size the fleet and dispatch
the vehicles to serve demand that is derived from trip
data or stochastically created (31). This model is referred
to as the Bauer, Greenblatt, Gerke (BGG) model.

Previous studies have shown that electric taxi fleets
are viable options under certain circumstances. However,
those studies have chosen fixed values for various fleet
parameters. To the authors’ knowledge, Bauer et al. was
the first study to explore a variety of vehicle, operational,
and infrastructure parameters to identify the fleet config-
uration with lowest cost, and the corresponding environ-
mental and energy impacts (31). It also assumed that
taxis can relocate to charge whenever they are idle, which
may reduce both the required battery range and overall
cost as well as the impact of the vehicle fleet on the power
grid.

In this work, a hybrid analytical approach is used. A
trip-based optimization model is developed that can scale
to a national scope and key assumptions and parameters
for this trip-based model are developed by applying the
BGG model in nine urban regions.

Approach

The primary contribution of this analysis is the optimiza-
tion model. This model treats the size of the PEV fleet
and the amount of charging infrastructure as continuous
decision variables (relaxing the problem from mixed-
integer to quadratic), allowing for heterogeneous vehicle
ranges and charger levels. The model minimizes opera-
tional costs by choice of the timing of fleet recharging
while requiring that mobility demand be served and
energy conserved. Planning costs are simultaneously
minimized by amortizing the cost of the fleet and

charging infrastructure to a daily time period. For a full
model specification, see the section ‘‘Model
Specification’’.

In addition to developing the optimization model, a
set of empirically derived inputs and assumptions for the
model application is also curated. While more work is
needed to refine the model and assumptions (see the sec-
tion ‘‘Gaps and Shortcomings’’), it is believed that useful
insights can already be gleaned from the results of the
modeling workflow. These are discussed in detail in the
section ‘‘Results and Discussion’’.

Figure 1 illustrates the source of all major model
inputs and assumptions including intermediate modeling
and analysis used in their derivation. Each model input
is described in further detail below, beginning with the
specification of the optimization model.

Model Specification

The dimensions of the model include time t, region r,
vehicle battery size b, charger level l, and trip distance d.
The model is quadratic in the objective as well as the
constraints and therefore can be efficiently solved with a
second-order cone programming solver.

Objective. The objective is to minimize the amortized
daily cost of the fleet, the infrastructure, and the fleet
operations.

minZ =
X

r

X
t

Ctr + Ic
r + IV

r

 !
ð1Þ

where Ct is the operations cost in hour t and region r, Ic
r

is the amortized daily charging infrastructure cost, and I v
r

is the amortized daily fleet cost.

Constraints. Operations Cost: cost of electricity energy
and capacity, as well as mileage-dependent vehicle
maintenance.
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where Pbtlr is the energy dispensed for charging by vehicle
class b in time t using level l in region r, ttr is electricity
price ($ / kWh), bv is the per-mile vehicle maintenance
cost, rd is the average travel distance in miles per passen-
ger trip for distance bin d, Dbdtr is the allocated demand
for trips, Pmax

r is the maximum power demanded over the
time horizon, br is the average demand charge for the
region ($/kW/day), and NT is the number of time steps in
the simulation (this turns the demand charge, which is
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levied once per day, into an hourly cost). In reality,
demand chargers are usually levied on a monthly basis,
so this daily charge neglects the fact that day to day var-
iation would likely lead to a higher monthly payment
than a simulation based on a single day. This can be
compensated for through sensitivity analysis or increas-
ing the number of simulated days; a task for future work.

Infrastructure Cost: in this constraint, the charger dis-
tribution factor accounts for spatial mismatch between
vehicle locations and available charger locations as well as
overbuilding necessary to decentralize chargers. In other
words, for a given number of vehicles charging, additional
charging infrastructure is required, assuming that not all
chargers are sited in the right location at the right time.

Ic
r =

X
l

Nlrgldlu
c
l ð3Þ

where dl is the charger distribution factor, gl is the power
capacity of the charger (kW), and uc

l is the amortized
daily charger cost ($/kW):

uc
l =

fc
l r(1+ r)L

c

(1+ r)L
c � 1

ð4Þ

where fc
l is the capital cost of charger of level l, Lc is the

lifetime of the charger in days, and r is the daily discount
rate.

Fleet Cost: in this constraint, battery costs are consid-
ered separately from the rest of the vehicle.

IV
r =

X
b

V �br(u
v + ubBb) ð5Þ

where V �br is the fleet size, uv is the amortized daily vehicle
cost (without a battery), ub is the amortized daily battery
cost ($/kWh), Bb is the battery capacity (kWh).
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v
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where fv
om is the daily variable operations and mainte-

nance (O&M) cost for the vehicle, fv is the capital cost
of the vehicle, and Lv is the lifetime of the vehicle in days.
And where fb is the capital cost of the battery ($/kWh),
and Lb is the lifetime of the battery in days.

Energy to Meet Demand: the energy consumed by the
fleet is a function of the number of trips served, the con-
version efficiency of the vehicles, the urban form (which
determines the length of empty vehicle trips), and ride
sharing. The effect of urban form and sharing are mod-
eled as multipliers on the energy efficacy of serving mobi-
lity demand.

Figure 1. Sources of data (blue), data processing (dark red), models (light red), intermediate data (grey), and model outputs (yellow) in the
overall modeling and processing workflow.
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Ebdtr =
Dbdtrmrhbrd

sd

ð8Þ

where Ebdtr is the energy consumed serving mobility of
vehicle type b and trip length d in hour t and region r, sd

is the sharing factor or the average number of passengers
per vehicle trip, mr is the urban form factor or one plus
the ratio of empty vehicles miles driven to vehicle miles
driven with passengers, and hb is the conversion effi-
ciency of the vehicle power train (kWh/mile).

Vehicles Moving: the number of vehicles actively ser-
ving trips is related to trip demand and the sharing fac-
tor. The term rd

Dtndt
corrects for the length of the time

period, allowing, for example, one vehicle to serve two
trips in an hour if the distance to speed ratio is 1/2.

V m
bdtr =

Dbdtrrd

sdDtndtr

ð9Þ

where V m
bdtr is the number of vehicles of type b serving

mobility demand of trip length d in hour t and region r,
ndtr is the average velocity of vehicles, and Dt is the length
of the time period in hours.

Vehicles Charging: the number of vehicles charging is
related to the power consumed by the capacity of each
charger type.

V c
btlr =

Pbtlr

gl

ð10Þ

where V c
t are the number of vehicles charging in hour t,

and gl is the charging rate (kW / charger).
Charging Upper Bound: it is assumed that the batteries

in fleet start full and therefore can only be replenished
up to the cumulative amount consumed by the previous
hour.

Xt
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Charging Lower Bound: charging must keep up with con-
sumption as limited by the capacity of the batteries.
Energy must be supplied by charging in the previous
hour to be used in the next hour. This constraint pre-
vents the aggregate state of charge of the vehicles from
becoming negative. By constraining only the aggregate
state of charge and not constraining individual vehicle
states of charge, it is assumed that the fleet can be man-
aged to maintain all individual vehicles appropriately. In
practice there could be solutions to the aggregate prob-
lem that are challenging to satisfy with the individual
vehicles.

Xt�1

t̂ = 0

X
l

Pb̂tlr ø
Xt

t̂ = 0

X
d

Ebdt̂r � V �brBb, 8btr ð12Þ

No Charge at Start: the first hour of the day needs to
have no charging to allow for the convention that charg-
ing can only occur after some energy is consumed by the
fleet.

Pbtlr = 0, t= 0, 8blr ð13Þ

Terminal State of Charge: the aggregate state of charge
of batteries must again be full at the end of the day. This
constraint would be too restrictive if the end of the day is
defined as midnight (since there is still a fair amount of
vehicle miles traveled [VMT] during that hour). The day
boundary is therefore shifted to the lowest VMT level of
the day, which typically occurs at 4 a.m.
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t
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d

Ebdtr, 8br ð14Þ

Demand Allocation: demand must be served by some
composition of vehicles.

X
b

Dbdtr =DDdtr ð15Þ

where DDdtr is exogenous demand in hour t (person
trips).

Fleet Dispatch: together vehicles serving trips, charg-
ing, and idle cannot exceed the fleet size.

X
d
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bdtr +V i

btr +
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Max Charging: vehicles charging cannot exceed the num-
ber of chargers.

X
bd

V c
bdtl ł Nlr ð17Þ

where Nlr is the number of chargers charging at power
level l in region r.
Max Demand: this constraint relates the maximum power
consumed for each region to the power drawn in each
time period. Because Pmax

r is in the objective function,
there will be no slack in the optimal solution, ensuring it
will be equal to the maximum power demanded by the
fleet.

Pmax
r ø

P
bl Ptblr

Dt
, 8tr ð18Þ

National Household Transportation Survey (NHTS)
Data

The model was applied at a national level based on esti-
mates of hourly demand for private vehicle trips on a typ-
ical day, as derived from the 2017 NHTS (75). NHTS
respondents log trip distance, timing, and vehicle type for
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all household members on a specified day. The responses
are weighted according to demographics to yield a typical
mobility profile over a single day across the U.S.

To produce the trip-demand model inputs, the coun-
try is partitioned into 13 broad geographic regions,
made up of the nine U.S. Census Divisions, (New
England [NE], Mid-Atlantic [MAT], South Atlantic
[SAT], East-North-Central [ENC], West-North-Central
[WNC], East-South-Central [ESC], West-South-Central
[WSC], Mountain [MTN] and Pacific [PAC]) with the
four largest states (California, Florida, New York, and
Texas) separated out into their own individual regions.
We use ‘‘NL’’ to refer to the remainder of the divisions
containing the large states, ‘‘NL’’ stands for ‘‘Not
Large’’. Hereafter, these regions are referred to inter-
changeably as ‘‘regions’’ or as the Census-Division-
Large-State (CDLS) subdivision. In addition, the trips
are subdivided according to an NHTS data field that
specifies whether a given respondent is in an urban or a
rural area. This yields a total of 26 regional data sets
(13 CDLS regions, each with urban and rural subre-
gions). Within each region, all trips are taken in private
vehicles (specifically, the following NHTS vehicle type
codes: car, SUV, van, pickup truck, motorcycle, RV,
and rental car), and weighted counts are computed in
eight bins of trip distance, mileage intervals specified by
(0, 2�, (2, 5�, (5, 10�,(10, 20�, (20, 30�, (30, 50�, (50, 100�,
and (100� 300�, with counts computed independently
for typical weekdays and weekend days. This specifies
the distribution of total daily trip demand by trip dis-
tance within each region.

To investigate the dynamics of vehicle charging and
the related effects on the grid, it is also necessary to esti-
mate the time variation of trip demand throughout the
day. One straightforward approach would be to further
subdivide the regional and distance bins by hour to pro-
duce hourly distributions of trip demand by distance.
However, the NHTS dataset is insufficiently large to sup-
port this level of granularity without introducing sub-
stantial noise into the trip demand estimates, especially
for longer trips and less populous regions. To circumvent
this issue, hourly trip distributions (by the hour in which
the trip initiated) are separately computed for each dis-
tance bin, subdivided by urban vs. rural and weekday vs.
weekend, but are aggregated up to the entire U.S., rather
than subdivided by CDLS. These hourly trip distribu-
tions are then applied to the total trip counts computed
within the more granular CDLS regions to produce esti-
mates of the hourly trip volume by distance within each
region. The resulting hourly trip distributions thus cap-
ture geographical variations in overall trip volume at the
detailed CDLS level, while assuming regional differences
in the hourly profile of trip demand are insignificant
(indeed, disaggregating this calculation into the four

U.S. census regions showed regional differences that
were noisy but consistent). Figure 2 shows the resulting
trip distributions.

StreetLight Data

To determine realistic values for urban form factor and
charger distribution factor for the optimization model, trip
data obtained from StreetLight Data is coupled with the
BGG model. StreetLight Data is a company that aggre-
gates data from cell phones and GPS devices to produce
transportation metrics such as travel times and volumes.

First, shapefiles were obtained from the Census
Bureau website with census tracts for a series of com-
bined statistical areas, as shown in Table 1. These shape-
files were then uploaded to the StreetLight Data portal,
and two types of data were obtained. ‘‘Trip attributes’’
files contained distances, times, and speeds between each
pair of census tracts. Data was only provided for zone
pairs with a significant number of trips, as determined
by StreetLight Data. ‘‘Trip Counts’’ data contained the
volume of trips between each census tract origin and
every traffic analysis zone (TAZ) with a significant vol-
ume, again as determined by StreetLight. The data also
contained significant trip counts between each origin
TAZ and destination census tract.

Since Streetlight trip attributes were binned into larger
intervals (e.g., percent trips with durations between 10
and 20 min, or 5 and 10 mi), the first processing step was
to interpolate distributions with increased resolution,
binning distributions by 1 min, 0.1 mi, and 1 mph for trip
duration, distance, and speed, respectively. To interpo-
late missing values, the average distributions were found
from the three nearest zones, along with data from the
nearest zones in the hour before and after. This process
was repeated iteratively until over 99% of all O-D pairs
had data in all hours for all three attributes.

While this interpolation process introduces a source
of error into the model, it is considered acceptable for
two reasons: All trip data between census tracts comes
from zone pairs with actual data, and in previous work
by Bauer et al., it was found that modifying trip reloca-
tion times by distributions with mean zero did not signif-
icantly change the results (31).

Trip counts were binned by hour, so the data was
interpolated to estimate the number of trips starting in
each minute. Trips starting outside of the combined sta-
tistical area (CSA) were removed to avoid double-
counting trips between regions.

These pre-processing steps resulted in trip counts for
each origin–destination pair by minute, and distributions
of duration, distance, and speed for each origin–
destination pair by hour. This data was used as input for
the BGG model.
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The BGG model proceeds chronologically over one
day of data, repeating until the fleet’s aggregate battery
capacity at the end of the day is within 5% of that at the
beginning of the day. In each minute, trips are assigned
to the nearest vehicle, and idle vehicles are routed to
charge or rebalanced in anticipation of future demand
(31). Travel times and distances between each taxi and
trip or charging point are imputed by drawing random
values from the corresponding distribution obtained
from StreetLight Data. To ensure a reasonable relation-
ship between time, distance, and speed for each trip, dis-
tances are re-sorted to best match the relationship
between draws for duration and speed. If a trip can only
be served by a vehicle with insufficient battery capacity,
the vehicle’s range is increased by 50-mi increments until
capacity is adequate. If no vehicle can serve a trip within
a 10-min wait time, a new vehicle is added to the fleet.
Thus, both battery range and fleet size increase

organically over the course of the simulation, providing
estimates of the minimum values required to serve
demand.

Simulations were conducted for each city with 100k,
200k, 400k, and 800k trips, and with both 15kW and
50kW charging power. Locations of chargers were deter-
mined by k-means clustering of trip origins and destina-
tions, which was determined to work as effectively as the
siting algorithm described in Bauer et al. (31).
Simulations were then run with sufficient chargers to
recharge the fleet assuming 25% empty miles and 50%
charger utilization, then again, assuming 100% charger
utilization. In each case, every charger was occupied dur-
ing peak charging times, so it was concluded that a char-
ger distribution factor dl of 1 would be sufficient.

While the simulation ran, the empty distance traveled
for each trip and charging event was recorded, and was
aggregated across census tracts to determine the urban

Figure 2. Hourly trip distributions (by hour of trip initation), for weekdays, in bins of trip distance, as estimated from the 2017 NHTS
for urban areas in 13 CDLS geographic regions.
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form factor mr in both rural and urban areas of each city.
Following the definition used by NHTS, rural areas were
considered to be all census tracts within a CSA not
contained within an urbanized area or urban cluster, as
determined by the Census Bureau. As shown in Figure 3,
it was found that urban form factor increases roughly with
the square root of area per trip. Using ordinary least
squares regression techniques, these ratios were extrapo-
lated to all other CSAs and urbanized areas in the country
based on population and area. Finally, population-
weighted means were taken to extrapolate from cities to
determine the urban form factor for each census division.

Power Sector Data

To model the fleet operations with reasonable electricity
cost estimates, different pricing scenarios were developed
that vary over a range of potential economic conditions
on the grid. Real time locational marginal price data (or,
if unavailable, day ahead price data) was downloaded
from five Independent System Operators (ISOs) across
the U.S. The ISOs were CAISO, NYISO, PJM, ERCOT,
and MISO. Data were downloaded for the entire year of
2017 as well as the first half of 2018. Across all five ISOs

and all locational pricing nodes, the median price from
each hour of the day was taken across the entire data set.
In addition, median prices were taken for each combina-
tion of ISO and month and some of the resulting price
profiles were used in one sensitivity analysis (see section
‘‘Price Shape’’). The average of the price profiles was then
subtracted and $ 0.09/kWh was added to produce a price
shape that keeps the hourly variation in price from the
wholesale sector, but has an average daily price equiva-
lent to the average commercial retail electricity rate in the
U.S. as estimated by the Energy Information Agency
(76). This hybrid approach allows the overall cost to
reflect the end-user cost of purchasing electricity while
also allowing the fleet to take advantage of price arbit-
rage opportunities throughout the day. The loads from
these fleets will be very large in aggregate, so it is reason-
able to expect they will somehow be able to participate in
wholesale power markets.

The final price assumption for the base scenario is
shown in Figure 4 along with 4 other pricing scenarios.
The ‘‘CAISO-Duck’’ scenario is based on the California
median price of electricity in March, 2017; the ‘‘ERCOT-
Summer’’ scenario is based on Texas prices in July, 2018,
and the ‘‘NYISO-Winter’’ scenario is based on New
York in January, 2018.

Based on data from the Utility Rate Database, a med-
ian national retail rate for demand charges in the U.S.
was estimated (77). The data was subsetted to commer-
cial rate schedules and then the demand charge price
from the primary monthly period was taken (i.e., if mul-
tiple time-of-use periods are defined, only the first period
in the database was used) and the median was found to
be $7.7/kW/month. The interquartile range was from $3
to $10.7, demonstrating substantial variability in prices
nationwide. It was found however, that model results are
largely insensitive to this assumption.

Key Assumptions

Table 2 lists all key assumptions used for the Base sce-
nario of the optimization model.

Table 1. Combined Statistical Areas Used for Multi-City Simulations with the BGG Model

Name
Area

(1000 km2) Census division
Population

(1000s)

Buffalo-Cheektowaga, NY 7.4 New York 1214
Charleston-Huntington-Ashland, WV-OH-KY 13.8 South Atlantic 680
Dallas-Fort Worth, TX-OK 42.7 Texas 7846
Fort Wayne-Huntington-Auburn, IN 8.2 East North Central 631
Lafayette-West Lafayette-Frankfort, IN 4.4 West South Central 252
Martin-Union City, TN-KY 3.4 East South Central 70
Rockford-Freeport-Rochelle, IL 5.5 East North Central 434
Seattle-Tacoma, WA 31.8 Pacific 4765
Virginia Beach-Norfolk, VA-NC 10.8 South Atlantic 1829

Figure 3. Ratio of empty miles to passenger miles in each
simulated CSA versus the ratio of CSA land area to number of
trips, with square-root regression line.
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Figure 4. Diurnal electricity price used in price shape experiment. Shapes are derived from 2017–2018 wholesale marginal pricing data
from various ISOs. Each profile has an average price of $ 0.09/kWh.

Table 2. Key Modeling Assumptions Used to Define the Base Scenario

Input Symbol Value(s)

Charger types and power gl L010=10kW, L020=20kW,
L050=50kW, L100=100kW,
L250=250kW

Charger capital cost fc
l L010=$5k, L020=$11k,

L050=$35k, L100=$95k,
L250=$425k

Charger lifetime Lc 10 years
Charger distribution factor dl 1.0 for all types
Demand charge price br $7.7/kW/month
Energy price ttr See Figure 4
Annual discount rate r 0.05
Number of distance bins Card(d) 10
Urban form factor mr See Figure 10
Sharing factor sd 1.5
Vehicle capital cost fv $30,000 (includes cost of automation)
Vehicle daily fixed O&M fv

om $ 0.64
Vehicle per-mile O&M bv $ 0.09
Battery capital cost fb $150/kWh
Vehicle/battery lifetime Lv ,Lb 3.4 years
Battery capacity Bb 75mi range=19.7kWh, 150mi range=41.1kWh,

225mi range=64.4kWh, 300mi range=89.4kWh,
400mi range=124.0kWh

Conversion efficiency hb 75mi range=0.262kWh/mi
150mi range=0.274kWh/mi
225mi range=0.286kWh/mi
300mi range=0.298kWh/mi
400mi range=0.310kWh/mi

Speed by distance bins ndtr 1.1 to 3.6mi = 18mph, 13.4 to 14.1mi = 32mph
24.1mi = 38mph, 35.5mi = 40mph
60.3 to 69.6mi = 45mph, 159.9mi = 48mph

Sheppard et al 9
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Gaps and Shortcomings

There are several gaps in the model specification and
assumptions that should be kept in mind when consider-
ing model results. In future research many of these short-
comings will be addressed.

� This model is only concerned with the distant
hypothetical future where SAEVs are a dominant
mode of transportation. In future work, person-
ally owned electric vehicles and their respective
impact on vehicle grid interactions will be added
to the model to analyze the transition to such a
future.

� Price is exogenously defined. In reality, the load
and charging flexibility of an SAEV fleet would be
enough to influence the cost of generating power.
In future work, power production costs will be
made endogenous to the model.

� Mobility demand is exogenously defined. In real-
ity, demand for mobility responds to the cost,
travel time, and convenience of the transportation
alternative both when competing against other
modes but also with respect to long term shifts in
land use and travel patterns. In future work, the
demand assumptions will be more closely aligned
with detailed regionally travel demand analyses
that do account for these feedbacks.

� The time used across all of the regions is in local
time. While this should not impact the dynamics
of fleet dispatch to serve mobility, the resulting
charging profiles are inappropriately assumed to
be additive by hour.

� The mobility assumptions only cover a typical
weekday; a more accurate planning model would
include weekend/holiday in the model and weight
the operational costs of these days to produce an
annualized cost.

� The speed distributions are exogenous and fixed,
the impact of congestion on travel times is there-
fore being ignored. This is a major feedback that
can only be addressed through more extensive use
of detailed travel demand models that simulate
traffic flow.

� Electricity price is based on a median price and
the simulation only runs for one day. Electricity
prices are highly variable by day and season. An
improved model would include multiple days in
the simulation representative of a full year.

� The model does not consider temporal overheads
associated with charging (e.g., maneuvering to
spot, plugging in, etc.) and with maintenance (e.g.,
cleaning the vehicle interior). These processes
could be approximated by derating the charging
power associated with each charger level.

� The model ignores the impact of C-rate and bat-
tery degradation on system cost and performance.
In particular, the fact is ignored that, in high
power charging, the charging rate must be reduced
past a vehicle state of charge of 80% before charg-
ing can commence.

� The model ignores the difference in battery life-
time among vehicles with different-sized batteries.
These would not age at the same rate, and should
therefore be disaggregated.

� The model does not attempt to optimize the seat-
ing capacity of the vehicles.

� We neglect medium/heavy duty vehicle electrifica-
tion that will likely take place along with passen-
ger vehicle PEVs and have impacts on aggregate
electricity consumption and peak load.

� We assume a constant sharing factor across the
model, but it likely varies by region, trip distance,
and time of day.

� We estimate the variability of urban form factor
by region, but it likely also varies by trip distance
and time of day.

� We neglect the cost of parking. This is due primar-
ily to the challenge of estimating regional average
parking costs in addition to the fact that under a
high penetration SAEVs, parking would become
much less limited in general, making current park-
ing prices unrepresentative of future costs.

Results and Discussion

In light of the gaps described above, the preliminary
results of running the model for the entire U.S. are pre-
sented. These results should be interpreted as generally
indicative of the characteristics of a national SAEV fleet,
not as a high-confidence prediction.

Base Scenario

We present high-level summary metrics for the cost mini-
mizing configuration of vehicle fleet, charging infrastruc-
ture, and charging profiles resulting from the Base
scenario in Table 3 at both the national and regional
scales.

If all U.S. mobility was satisfied by SAEVs with a
sharing factor of 1.5, a fleet of only 12.5 million vehicles
and 2.4 million charge points would be required, con-
suming 1,142 GWh of energy per day (or 8.5% of daily
U.S. electricity demand) with a peak load of 76.7 GW
(or 11% of the U.S. non-coincident peak) at a cost of
$ 0.27/mi. The distribution of power capacities in the
charging infrastructure is strongly weighted toward
50kW chargers (Table 3), but the solution includes

Sheppard et al 11



substantial numbers of lower power chargers as well,
roughly split between 10kW and 20kW chargers.

The regionally disaggregated results tend to follow
predictable patterns that are closely related to the popu-
lation of the region, and therefore demand for mobility.
When comparing demand for charging in specific regions
with current-day electricity demand, the result can be
quite different from the national average. For example,
the 2017 peak load in CA is 50GW and the simulated
charging peak is 6.5GW, or 17% of the current peak.
This represents a large increase in load and the manage-
ment of the fleet charging would be of major conse-
quence to the grid operator.

The distribution of vehicle types and charger power
by region are shown in Figure 5. There are clear, sys-
tematic differences in fleet composition between urban
and rural sub-regions, with a greater reliance on longer-
range vehicles in the rural areas where trip lengths are
longer (12.4 mi on average versus 7.8 for urban). The
charging infrastructure requirements in rural regions
often include 100kW chargers while the urban regions
can be satisfied by lower-power chargers.

In Figure 6, the bulk dispatch of the vehicle fleet
between moving, charging, and sitting idle is shown over
the course of the day. The total size of the fleet is deter-
mined by the afternoon peak for mobility demand
(4 p.m. rush hour). Despite the steep drop in demand for
mobility into the evening hours, overnight charging of
the fleet doesn’t begin until after midnight (hour 25) tak-
ing advantage of the steadily decreasing marginal elec-
tricity price (Figure 4).

In Figure 7, the daily profile of aggregate energy
stored in the batteries of the fleet is shown, disaggregated

by vehicle type. The batteries are assumed to start the
day full and this energy is used to meet the morning rush
hour with some modest recharging in the early hours of
the day. After the 7 a.m. mobility peak, roughly half of
the fleet that is not needed for serving mobility is con-
tinuously recharged until the afternoon rush begins at 3
to 4 p.m. This charging replenishes the energy in the fleet
sufficiently to allow mobility to be served through the
afternoon rush into the late evening with very little charg-
ing. It is acknowledged that the aggregate state of charge
depletes almost to zero which is unlikely to be acceptable
to fleet managers. In future analysis, this lower bound

Figure 6. Vehicle dispatch by hour between moving (i.e., serving
mobility demand), charging, or sitting idle.

Figure 5. Optimal distribution of fleet vehicles and charging infrastructure for base scenario.
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will be constrained to allow for energy reserves and
operational flexibility.

Finally, Figure 8 shows the distribution of charging
by charger power capacity over the course of the day.
During peak charging hours, all chargers are in use.
During most of the rest of the day, the distribution of
charging is roughly proportional to the charging infra-
structure distribution.

Also of note in the regional results is that the per-mile
cost does not vary in a consistent manner between urban
vs. rural regions. Vehicle cost is the largest contributor to
overall cost (Figure 9). The variation in urban vs. rural
regions is therefore largely driven by the composition of

the fleet, which ultimately is a result of the particular dis-
tribution of mobility demand for each region. Based on a
regression analysis, 45% of the variation in the difference
in cost between urban and rural regions can be explained
by the relative differences in the demand for person trips
and for person miles traveled in the regions. The differ-
ences in urban form factor between urban and rural
regions (Figure 10) were not predictive of the cost results.
The other potential explanations for the variation include
the timing of mobility, an effect that will be explored in
future research.

Illustrative Sensitivities

We conducted several sensitivity experiments to assess
the response of the optimal solution to key model inputs
and assumptions.

Ride Sharing. The first analysis involves varying the
assumption of ride sharing, as this is a parameter that is
widely recognized to have a dramatic impact on system
outcomes. In Figure 11, the fleet and charger composi-
tion are shown for each scenario in the experiment.
Because the sharing factor is a simple multiplier on
demand, the optimal solution is identical in all respects
except that many decision variables are simply scaled.
Across all metrics of interest (fleet size, charger require-
ments, electricity demand, etc.) the solution is scaled in
proportion to the sharing factor.

While these results are uncomplicated, they do high-
light the power of sharing in a future transportation sys-
tem. It has immense potential to improve the efficiency

Figure 8. Charging profile of national fleet by charger power
capacity.

Figure 9. Cost per mile by cost category for the base scenario.

Figure 7. Aggregate energy stored in national fleet batteries by
vehicle range by hour of day.
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of mobility and to decrease the negative impacts. Because
sharing is not evenly distributed, in future research an
assessment will be made of how the sharing factor
changes across regions and time.

Battery Cost. In a separate sensitivity, the cost of batteries
was varied (Figure 12). Higher-cost batteries lead to a
fleet with shorter-range vehicles and vice versa. These
shifts cause the total battery capacity procured for
the fleet to vary from the base solution by +68% for
$25/kWh batteries, and by 24% for $250/kWh batteries.

In other words, expensive batteries incentivize a reduc-
tion in the total purchase of batteries which can only be
achieved by distributing them among shorter-range vehi-
cles. The total fleet size also increases very slightly with
higher battery costs (\1%); this was attributed to the
increased need for some vehicles to charge during the
afternoon rush. Conversely, at lower battery costs—less
than or equal to the base cost of $150/kWh—when the
fleet mix includes longer-range vehicles, the need for
charging at 4 p.m. vanishes.

The change in fleet composition also changes the com-
position of the charging infrastructure. There are three

Figure 10. Urban form factor (mr) for each region in the base scenario.

Figure 11. National charging infrastructure (left) and fleet composition (right) requirements for varying assumptions on sharing factor sd

(x-axis).
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distinct trends, from $25-75/kWh, there is a substitution
of 20kW for a combination of 50kW and 10kW chargers.
From $75-150/kWh, the 50kW chargers increase at the
expense of lower power charging. From $150-250/kWh,
100kW chargers enter the solution, composing 5–10% of
the total power capacity of the infrastructure. In general,
as the fleet shifts toward shorter-range vehicles, there is
an increased reliance on higher-power chargers. Faster
chargers allow lower-range vehicles to be quickly
recharged and utilized in situations where a longer-range
vehicle could have simply continued driving.

Price Shape. Finally, the impact of the shape of daily elec-
tricity price profile was explored. The scenarios are illu-
strated in Figure 4. The result of these different price
scenarios on the aggregate charging profile is shown in
Figure 13.

Across all scenarios, the charging profile in the first
half of the day is almost identical but varies in instructive
ways in the second half of the day, after the 4 p.m. mobi-
lity peak. In the flat pricing scenario, charging never
returns to the maximum during the rest of the day, indi-
cating that there is no binding constraint on when the
vehicles charge in the absence of price variation. These
two results support the general conclusion that across all
scenarios, charging in the first half of the day is largely
dispatched to supply mobility and charging in the second
half of the day is largely dispatched to minimize energy
costs. For the remaining price scenarios, the price-
responsive charging follows common sense patterns,
avoiding the highest cost hours in favor of the lowest
cost.

Conclusion

We have formulated a quadratically constrained, quadra-
tic programming problem designed to model the require-
ments of SAEVs at a national scale. The size of the
SAEV fleet and the necessary charging infrastructure are
treated as decision variables, allowing for heterogeneous
vehicle ranges and charger levels. The model minimizes
operational costs by choice of the timing of fleet rechar-
ging while requiring that mobility demand be served and
energy conservation be maintained. Planning costs are
simultaneously minimized by amortizing the cost of the
fleet and charging infrastructure to a daily time period.

In the base scenario solution, it is found that all mobi-
lity in the U.S. currently served by 276 million personally
owned vehicles could be served by 12.5 million SAEVs at
a cost of $ 0.27/vehicle-mile. The energy requirements for
this fleet would be 1142 GWh/day (8.5% of 2017 U.S.
electricity demand) and the peak charging load 76.7 GW
(11% of U.S. power peak).

The following tasks and model improvements remain
for future research:

� Increase the number of days simulated to capture
day to day and seasonal variability.

� Conduct further sensitivity analysis around
regionally distinct pricing scenarios.

� Couple the model to a regional scale model of
power generation; simultaneously minimize the
cost of the mobility system with the cost of gener-
ating power.

� Add temporal overheads associated with charging
and vehicle maintenance.

Figure 12. National charging infrastructure (left) and fleet composition (right) requirements for varying assumptions on battery cost
(x-axis).
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� Model heterogeneous battery lifetimes based on
simulated cycling.

� Include other forms of transportation electrifica-
tion (personally owned and medium/heavy duty
vehicles).

� Investigate heterogeneous sharing and include in
the model.

� Investigate variability of urban form factor by trip
distance and time of day.

� Investigate variation in the peak electricity
demand over different days or seasons.
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