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Abstract
The urgent need to decarbonize the transportation sector combined with falling battery prices has
spurred industry and policy interest in long-haul truck electrification. The charging behavior and
resulting loads from electrified long-haul freight trucks are crucial for the smooth operation of the
electric grid and have far-reaching environmental impacts (e.g., greenhouse gas and other air
pollutant emissions). However, the aggregate energy impact of a fleetwide shift to electrified
long-haul freight trucking has not been explored. This study combines electric truck design
scenarios, bottom-up truck weight modeling, vehicle energy modeling, large-scale truck traffic
data, and simulation of likely operation and charging behaviors to estimate end-use energy
consumption and location-specific hourly charging loads for a national fleet of long-haul electric
trucks. Relative to a fleet of future diesel trucks, electrification would reduce direct end-use energy
consumption by 0.9 × 1018 J (0.9 quadrillion BTU), but electrification might increase life cycle
energy consumption depending on the electricity source. The electricity required to charge
long-haul electric trucks is equivalent to five percent of annual electricity consumption in the
United States (US). The simulated truck charging loads peak during the day across the US grid
regions, but the charging peaks’ exact timing is sensitive to when trucks are dispatched for
operation. The load shapes suggest that electric trucks’ charging loads can coincide with peaks in
solar power generation, and planning could enable on- or off-site integration between truck
charging stations and renewable electricity generation.

1. Introduction

Countries around the world have set up ambitious policy targets to attain carbon neutrality by mid-century
(United Nations Environment Programme (UNEP) 2020). The electricity sector has been the focus for decar-
bonization efforts due to the relatively low cost of decarbonization, which is mainly due to a recent drop in
the price of natural gas and the growing economic competitiveness of renewable electricity generation tech-
nologies, including wind and solar. The next step is the electrification of important end uses, which makes
the transportation sector a prime target due to its large size and reliance on petroleum-derived fuels (Interna-
tional Energy Agency (IEA) 2020a, 2020b). Within the transportation sector, long-haul trucking is recognized
as being particularly difficult to decarbonize (Davis et al 2018). With about two million drivers employed and
2.9 million heavy-duty trucks registered, the US trucking sector hauls 71% of total freight by payload, 73%
by value, and 42% by payload weight-distance (Davis and Boundy 2019, US Bureau of Labor Statistics 2020).
Furthermore, heavy-duty trucks (class 7 and 8) consume more than four times the energy used to operate
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smaller and lighter trucks (class 3–6 trucks, including those used for the last-mile delivery) (Davis and Boundy
2019). As the most important freight transportation mode, the trucking sector’s reliable operation is essential
across the supply chain. Meanwhile, trucking is projected to play a more significant role in the economy, which
arises from accommodating the rapid growth of e-commerce. Studies project a 70%–100% increase in truck-
ing demand—as measured in terms of payload weight-distance—between the 2010s and 2040s (US Federal
Highway Administration (FHWA) 2017, Liu et al 2015). Thus, given the growth in this energy-intensive sector,
it is crucial to investigate effective and feasible decarbonization strategies.

Historically, the trucking industry has not voluntarily adopted new fuels and vehicle technologies (Engi-
neering 2020, Tong et al 2019). Incremental improvements to trucking energy use and emissions, such as
diesel hybrid-electric technologies and natural gas trucks, which were pursued in periods of high oil prices and
low natural gas prices, have limited greenhouse gas (GHG) emissions reduction potential (Tong et al 2015).
Advanced biofuels, which could reduce the life-cycle carbon footprint by 80% or more (Baral et al 2019), face
scale-up challenges ranging from long lead times to gain approval for new fuel blends to limited investments
in fuel production infrastructure and feedstock crops (Richard 2010, Taptich et al 2018). Mode-shifting from
truck to rail could decrease GHG emissions as rail is less energy and emissions-intensive than trucking for
long-distance bulk freight transport (Zhou et al 2017, Kaack et al 2018, Taptich and Horvath 2015). However,
the role of rail transport has diminished over time in the United States (US) due to congestion along major
railroad corridors, and the limited access to the specialized and costly infrastructure required for railroads
(e.g., direct-access terminals, railways, and intermodal depots for truck delivery), which play against the speed
and flexibility advantages of long-haul trucking (Davis and Boundy 2019).

A promising pathway for freight truck decarbonization is electrification, which includes battery-electric
vehicles as well as fuel cell electric vehicles (California Air Resources Board (CARB) 2015, Moultak et al 2017).
If electricity or hydrogen are produced using renewable energy (such as wind or solar), vehicle electrification
could speed up decarbonization in the transportation sector. Battery-electric vehicles have already become a
mainstream technology for light-duty vehicles in Norway; they are the fastest-growing transportation technol-
ogy in China and the US (Stephens et al 2018). While previously considered impractical, heavy-duty vehicle
electrification is becoming an increasingly viable approach due to rapidly-falling battery prices and the con-
tinued build-out of charging infrastructure—which is still mostly targeted at light-duty electric vehicles (EVs)
(ICF 2019, Sharpe et al 2020). Some of the largest fleet operators, such as Walmart and Amazon, have ordered
battery-electric trucks of all sizes from truck manufacturers (e.g., Tesla, Rivian, Volvo, and Cummins) (Hall
and Lutsey 2019). In the meantime, policymakers are attempting to accelerate this electrification trend. The
US federal government has recently announced a plan to shift its vehicle fleet to fully battery-electric vehi-
cles (Kaplan 2021). California enacted Advanced Clean Truck regulation, which requires significant sales of
zero-emissions trucks starting in 2024 (California Air Resources Board (CARB) 2020).

Recent research has shown that battery-electric trucks could soon reach performance that would make
them viable for mass adoption (in terms of payload and driving range) based on projected battery technology
improvements (i.e., higher battery specific energy) and aerodynamic truck design (Sripad and Viswanathan
2017, Guttenberg et al 2017, Sripad and Viswanathan 2019, Phadke et al 2019, Hovi et al 2020). Furthermore,
vehicle automation technologies (such as truck platooning) could further reduce electric trucks’ energy con-
sumption and improve battery lifetime (Guttenberg et al 2017). Electric trucks’ economic competitiveness
depends on the trade-off between the higher upfront purchasing cost and reduced operating cost (ICF 2019,
Burke and Miller 2020). Sripad and Viswanathan (2019) quantified the likely ranges for prices of electricity
and batteries, battery lifetimes, as well as vehicle drag coefficients so that electric trucks have a 5 years payback
period relative to the purchase of new diesel trucks (Sripad and Viswanathan 2019). As electricity rate struc-
tures are crucial drivers of electric trucks’ operating costs, Phadke et al proposed reforms of electricity rate
structures in order to incentivize further adoption of electric trucks (Phadke et al 2019).

Shifting from diesel trucks to battery-electric trucks adds significant energy demand to the electricity sec-
tor. Yet, little is known about how truck flows and driving schedules impact this demand and hence the grid
via charging loads. As highlighted by prior research, the shape of EVs’ charging loads not only characterizes
the energy needs of vehicle electrification for the electric power grid but also influences the economic and
environmental impacts of vehicle electrification (Muratori et al 2019, Tong and Azevedo 2020, Muratori and
Mai 2020, Coignard et al 2018, Tong et al 2021).

In contrast to the rich literature on light-duty EVs, the potential load shapes of electric trucks charging in
aggregates remain unexplored, in part because detailed data on commercial truck trips are notoriously difficult
to obtain. As a result, prior truck electrification studies have used total charging load from an assumed simple
use case of electric trucks instead of a detailed hourly load profile (Sripad and Viswanathan 2017, Guttenberg
et al 2017, Sripad and Viswanathan 2019, Phadke et al 2019). The coarse temporal resolution of electric trucks’
charging load limits the economic and environmental analysis on truck electrification since the dispatch of the
electric power grid occurs on a much shorter timescale (i.e., minutes). Furthermore, the studies mentioned
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Figure 1. An integrated assessment framework to estimate end-use energy consumption and generate location-specific hourly
charging load profiles for a national fleet of long-haul electric trucks.

above did not account for real-world factors (e.g., truck speed, payload, road grade) in truck operation, which
could have a significant effect on energy consumption, charging needs, and engineering designs for electric
trucks (Reyna et al 2015, Smith et al 2019). A more recent study by Tong et al did account for some of these
real-world complexities, but its focus was on the estimation of local human health impacts and monetized
climate damages rather than the energy impacts and the electricity load shapes (Tong et al 2021).

To fill this knowledge gap, we combine electric truck design, bottom-up truck weight modeling, vehicle
energy modeling, large-scale truck traffic data, and simulation of electric truck operation as well as charging
behavior to estimate energy consumption and location-specific hourly charging loads for a national fleet of
long-haul electric trucks. Our modeling framework is based on the assumption that electric trucks must deliver
the same level of freight service as current diesel trucks despite technological disadvantages such as shorter
range, longer charging time, and lower payload-carrying capacity. The modeling framework presented here is
open-source, flexible, and scalable, allowing quick updates to simulate the rapidly-changing reality given the
profound uncertainty of technology development and technology adoption (Tong et al 2021).

2. Methods

We developed an integrated assessment framework to estimate the end-use energy consumption and location-
specific hourly charging load profiles for a national fleet of long-haul electric trucks. The modeling of charging
behavior and quantification of the resulting charging loads is critical for the planning and operation of the
electric grid and associated charging infrastructure, both of which are essential for the successful transition to
electrified trucking at scale. In this work, long-haul freight trucks refer to heavy-duty freight trucks that oper-
ate on the national highway network (figure 1 top-left panel) and serve locations at least 50 miles apart, yet
excluding trucks that are part of a multi-mode system (e.g., freight-rail-freight) (US Federal Highway Admin-
istration (FHWA) 2017). As shown in figure 1, the framework considers long-haul truck flows (in 2012, the
most recent year) (US Federal Highway Administration (FHWA) 2017), electric truck design, a vehicle energy
model, the truck departure schedule, truck speed regulation, charging infrastructure, as well as hours of ser-
vice regulation. The truck flow data have a spatial resolution of 1 km. We simulated truck activities (including
driving, charging, and idling) at a temporal resolution of 1 min to derive hourly charging load profiles at pre-
determined charging stations. Although we present and discuss load profiles for a 100% electrification scenario
across the US, our framework can generate load profiles for any adoption level of electric trucks on some or
all highways in the US.

2.1. Freight demand model
We used the highway assignment database in the Freight Analysis Framework (FAF; v4.3) to model freight
demand (US Federal Highway Administration (FHWA) 2017). The FAF database estimates freight flows
between 137 zones in the US based on the commodity flow survey as well as trade and shipping data. It then
allocates freight flows to (diesel) long-haul trucks using a traffic assignment model accounting for dead-head
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Figure 2. Comparison of corridor length, truck flow, and the total freight distance across highway corridors. Each dot represents
a highway corridor. The size of bubbles indicates the total payload-weight distance. The blue bars on the margin represent the
frequency distribution of highway corridors along each axis. Data source: Freight Analysis Framework (US Federal Highway
Administration (FHWA) 2017).

miles (when the trailer is empty). The FAF database presents a snapshot of daily-average long-haul truck oper-
ation (such as truck flow, payload) as well as road infrastructure (such as speed limit, road grade) for 2012 (the
most recent data year). The FAF database projects freight trucking demand in 2045 based on the 2012 estimates
by extrapolation of economic growth. On average, trucking demand in 2045 is projected to be 70% higher than
that in 2012 (figure S2 in the supporting information (https://stacks.iop.org/ERIS/1/025007/mmedia)). The
increase in freight trucking demand is consistent across all highways studied. We chose to use the actual truck-
ing demand in 2012 to avoid additional uncertainty, but our estimates can be easily updated to reflect the
projected trucking demand in 2045.

We transformed the FAF database into an origin-and-destination database following (Tong et al 2019).
We assumed that freight is carried by long-haul trucks in a series of connecting corridors. In each corridor,
long-haul trucks operate in a hub-and-spoke manner (i.e., move cargo from one end of a corridor to another
end). We assumed that each freight shipment originates and ends at an endpoint of these corridors, so we do
not have to model shipments that are moved partially in any corridor. Long-haul trucks operating in different
corridors were assumed to be temporally independent. Thus, trucks in one corridor do not wait for trucks
from a connecting corridor, even if they carry the same cargo. This is a simplification, but we do not believe
it would lead to substantial bias in our first-order estimates. However, the future availability of container-level
freight data will allow for more detailed modeling of infrastructure prioritization for truck electrification.

We use a subset of the national highway network, shown in the top-left panel of figure 1. The selection
criteria include (1) national coverage, (2) connection to major cities and freight centers, and (3) ranking of
highways by truck traffic. The selected highway network consists of 131 intersections (usually cities) and 200
corridors covering a total road distance of 48 192 km. Of the 200 corridors, 154 corridors are long-distance cor-
ridors that connect two different cities or townships, and the remaining 46 are urban corridors, whose lengths
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Table 1. Electric truck design scenarios and parameters.

Technology scenario Pessimistic Base-case Optimistic

Long-haul trucks
Equivalent frontal area (m2) 5.95 5.4 4.9
Rolling resistance 6.4725/1000 5.5725/1000 4.8575/1000
Empty vehicle weighta (kg [lb]) Diesel tractor 8618 [19 000] 7756 [17 100] 6895 [15 200]

Trailer 6123 [13 500] 5511 [12 150] 4899 [10 800]
Battery technologyb

Specific energy (W h kg−1) Cell 250 343 400
Pack 160 240 320

Pack factor 64% 70% 80%

aValues in US conventional units are listed after the SI unit values and are in the bracket.
bPack-level specific energy is used in the analysis. The set of cell-level specific energy and pack factor
illustrates a possibility to realize the assumed values.

Table 2. Diesel truck design scenarios and parameters.

Technology scenario
Current
design

Incremental
design

Advanced
design

Long-haul trucks
Equivalent frontal area (m2) 5.95 5.4 4.9
Rolling resistance 6.4725/1000 5.5725/1000 4.8575/1000

Empty vehicle weighta (kg [lb])
Diesel tractor 8618 [19 000] 7756 [17 100] 6895 [15 200]

Trailer 6123 [13 500] 5511 [12 150] 4899 [10 800]

aValues in US conventional units are listed after the SI unit values and are in the bracket.

are less than 20 miles and part of urban highway. We find substantial heterogeneity in corridor length and truck
traffic due to divergent social-economic factors, geographic conditions, and build-out of road infrastructure
(figure 2).

2.2. Vehicle energy model
We estimated the specific energy consumption of diesel trucks (as the benchmark) and electric trucks based
on a standard vehicle powertrain model (Sripad and Viswanathan 2017). Modeling detail is available in the
supporting information (S.I.). The vehicle energy model calculates the tractive energy needed to overcome the
aerodynamic drag and rolling frictional forces as well as gravity. Road-level energy consumption is computed
using the modeled truck speed (determined by the truck speed limit and road grade), truck weight, and road
grade from the FAF database. We assumed a standard drive cycle, CARB HHDDT cycle’s ‘cruise and composite’
segment (National Renewable Energy Laboratory (NREL) 2019), due to the lack of availability of real-world
second-by-second drive cycle data. We did not consider regenerative braking in our model, which may result in
underestimates of energy efficiency for electric trucks and should be explored in future work. This choice was
made as the impact of regenerative braking depends on the design strategy and control algorithm implemented
by individual truck manufacturers. However, since long-haul trucks operate mainly in high-speed cruise mode,
the modeling choice of excluding regenerative braking likely has limited impact on the estimated aggregate
energy impact of electrifying long-haul trucks. It is notable that our model does not include the effect of
congestion on truck energy use which, if included, would exacerbate the impact of excluding regenerative
braking. Finally, we assumed typical weather and excluded the impacts of extreme weather, which is known to
adversely affect the performance and lifetime of EVs (Yuksel and Michalek 2015).

2.3. Electric truck design
The baseline long-haul truck in our model is a high-roof tractor with a box trailer, which is the current
prevalent configuration on the road (US Environmental Protection Agency (EPA) 2016). The truck design
parameters include the equivalent frontal area, rolling resistance coefficient, and gross vehicle weight. As shown
in table 1, we modeled three vehicle design scenarios: base-case, pessimistic, and optimistic, derived from the
regulatory impact assessment for trucks’ fuel efficiency standards (US Environmental Protection Agency (EPA)
2016).

Electric trucks are assumed to have a 1 or 2 MW h battery. The pessimistic pack-level specific energy is
160 W h kg−1, the same as Tesla model 3 (Field 2019). We assumed the base-case pack-level specific energy
increases by 50%, from 160 W h kg−1 to 240 W h kg−1 (USDRIVE 2017). Finally, the optimistic pack-level
specific energy doubles to 320 W h kg−1, assuming a battery technology breakthrough (beyond lithium-ion
technologies) (Sripad and Viswanathan 2017). The purpose of these scenarios is to illustrate the potential
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outcomes of battery technology developments such as new materials, manufacturing advances, and increased
packing efficiency, and further discussed in (Tong et al 2021).

2.4. Diesel truck design
We also modeled one type of current and two types of future diesel trucks (incremental-design and advanced-
design) to provide a fairer counterfactual comparison relative to future electric trucks. The design parameters
of diesel trucks include the equivalent frontal area, rolling resistance, and empty vehicle weight (table 2). To
ease comparison, diesel trucks’ design parameters are aligned with those of electric trucks.

2.5. Bottom-up truck weight model
An empty electric truck’s weight is calculated as the weight of an empty diesel truck plus the weight of com-
ponents unique to electric trucks (i.e., battery and electric motors) minus the weight of components unique
to diesel trucks (i.e., diesel engine, fuel tank, and pollution control devices) (refer to S.I. for detailed assump-
tions). A long-haul truck’s empty weight is the sum of a tractor’s weight and an empty trailer’s weight. The
maximum payload is the difference between the federal gross vehicle weight (GVW) limit (80 000 short tons
in the US) and an empty tractor-trailer’s weight.

2.6. Electric truck flow and payload by highway corridor
To estimate truck flows and payloads for electric trucks across the highway network, we first calculated diesel
trucks’ payload on each highway corridor from the transformed FAF database. Then, for any corridor, if diesel
trucks’ payload is no greater than the maximum payload of electric trucks, the number of electric trucks is
assumed to be the same as diesel trucks. Otherwise, we calculated the number of electric trucks loaded to the
federal GVW limit to carry the same freight as diesel trucks. This calculation allows for additional truck trips
to compensate for electric trucks’ lower payload-carrying capacity. We assumed that extra electric trucks are
readily available to meet this demand for additional trips.

2.7. Electric truck charging infrastructure
The goal of the truck charging simulation was not to predict optimal charging station locations along key
corridors but rather to develop a simplified model of charging behavior that would result in realistic hourly
load curves in each grid region. We modeled vehicle charging behavior such that no detours or waiting are
required to charge trucks. Ensuring adequate infrastructure to support this idealized assumption has an eco-
nomic impact, but these costs are beyond the scope of this study. Electric trucks stop and charge at charging
stations that they encounter from the trip origin to the destination. In terms of charging station locations,
we considered a heuristics-based planning strategy for charging infrastructure, which simulates the real-world
distribution of refueling stations driven by market competition (Tong et al 2019). Charging stations are always
located at highway intersections (endpoints of highway corridors) and, when necessary, are installed along
highway corridors to cover electric trucks’ trips. The number and locations of charging stops within any high-
way corridor are determined using the trip energy consumption (outputs from the freight demand model and
the vehicle energy model) and allowable battery capacity (85% of battery’s state of charge (SOC)). For sim-
plicity, charging stations are sized to meet the peak charging need (meaning charging station sizing is never
the limiting factor for truck charging power in our model). Finally, we assumed that charging infrastructure
planning is optimized for either 1 MW h or 2 MW h electric trucks. We did not run any blended scenarios in
which both 1 MW h and 2 MW h electric trucks coexist.

As an example of our approach, consider a hypothetical scenario in which a fleet of 1 MW h electric trucks
moves freight across a 1000 km highway corridor. The vehicle energy model first calculates the specific energy
consumption using truck characteristics as well as the road grade and speed limit; the result for this hypotheti-
cal corridor is 1.7 kW h per km. The model then calculates the range of the 1 MW h and 2 MW h electric trucks
as 500 km and 1000 km (assuming 85% battery SOC). For 1 MW h electric trucks, the charging infrastructure
model ‘builds’ two charging stations at the trip origin and the trip destination (i.e., highway intersections) and
one charging station in the middle of the highway corridor, or 500 km away from the trip origin. However, for
2 MW h electric trucks, the charging infrastructure model ‘builds’ only two charging stations at the trip origin
and the trip destination. In reality, more charging stations would be built than this idealized scenario, but this
is assumed to have a minimal impact on the total load curves for each grid region, as the spatial distribution
of overall energy demand does not change significantly.

2.8. Electric truck charging behavior
We assumed that electric trucks are fully charged (as a result of off-duty charging) after drivers’ off-duty rest
(�8 h). Once dispatched, electric trucks are driven to the trip destination, and the trip time is determined
by the local speed limits as well as road conditions and characteristics. We assumed that when electric trucks
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Figure 3. The probability distribution of truck departure in a typical day: an early-departure scenario (left) and a late-departure
scenario (right). The color in each cell represents the probability of truck departure in that hour and minute; darker colors
represent higher probabilities than lighter colors. The sum of the probability distribution equals one.

encounter charging stations, they will always make a stop to charge, regardless of their estimated state of charge.
Because the planning of the charging infrastructure considers the trip energy consumption of electric trucks
with perfect foresight, electric trucks make charging stops only when needed in interstate corridors. However,
in our simplified model, electric trucks would make additional non-essential charging stops in urban highway
corridors. This modeling assumption does not substantially impact total load curves but does slow truck trips
in urban areas and may serve as a proxy for congestion, which is not otherwise built into our model. The
charging session at the trip destination was assumed to start immediately after arrival. Demand response, load
flexibility, or smart charging are not considered but worthy of future investigation.

We explored scenarios with varying charging power, ranging from 0.5 MW to 4 MW for charging en route
trips. During the off-duty time, we assume a lower charging power of 150 kW to minimize cost. The charging
efficiency is 97% assuming solid-state transformer-based medium-voltage extreme fast charging technology
(Srdic and Lukic 2019). This charging technology is more energy-efficient than existing technologies and is
expected to be widely available soon (Srdic and Lukic 2019).

2.9. Electric truck travel diary
We generated temporal-spatial profiles (i.e., travel diaries) for long-haul trucks. The travel diary records an
electric trucks’ activities (e.g., driving, charging, and idling) by time and location. Driving duration is calcu-
lated using the distance to the next stop (i.e., charging stops or trip destination) and the truck speed profile. A
time zone adjustment is applied when trucks drive across time zones. Charging duration is the ratio between
the amount of charged energy and charging power plus a 10 min set-up time (Meintz et al 2017). We fur-
ther constrained long-haul trucks’ temporal profile to obey hour-of-service regulations. In any 24 consecutive
hours, a driver can only drive up to 11 h and can be on duty for a maximum of 14 h. Furthermore, a manda-
tory 30 min break is required after 8 h of consecutive driving (US Federal Motor Carrier Safety Administration
(FMCSA) 2011).

2.10. Electric truck departure scenario
The starting time in the travel diary is when an electric truck departs from the off-duty location. We assume that
off-duty locations are always at highway intersections. We model the temporal distribution of truck departures
using a probability distribution over a discrete time grid on a given day (noted as ‘truck departure scenario’)
(figure 3). The first truck departure scenario, based on long-haul (diesel) trucks that operated between North-
ern California and nearby states in 2015 (July to November, at least three months of data for each truck),
has two probability peaks of departure at 1 AM and 3 AM (Boriboonsomsin et al 2017). The second scenario
has one 5 AM probability peak, based on long-haul (diesel) trucks headquartered in Southern California and
operated within California in 2016 (July to August).

2.11. Location-specific load curve
We generated charging load profiles for electric trucks according to their travel diaries. Charging loads from
different electric trucks at the same charging stations (determined by a unique set of latitude and longitude)
were combined to create location-specific charging load profiles, which can be further aggregated for electric
power grid analysis.
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Table 3. Annual vehicle distance traveled, annual energy consumption, and fleet-average specific energy consumption of long-haul
diesel and electric trucks (that meet the long-haul freight demand in the US in 2012). This table is used to compare the end-use energy
consumption between diesel trucks and electric trucks. Life cycle energy consumption needs to account for the energy loss and transport
of diesel and electricity, which depends on the electricity generation mix.

Metric Unit

Diesel truck Electric truck

(Truck design) (Truck design)
Current Incremental Advanced
design design design Pessimistic Base-case Optimistic

N/A (Battery capacity)
1 MW 2 MW 1 MW 2 MW 1 MW 2 MW

h h h h h h

Vehicle distance billion km 114 121 188 114 126 114 114

End-use energy TW h N/A 223b 347b 184b 210b 161b 170b

consumption billion liters of 49 44 40 N/A
diesel

EJ (1018 J) 1.9a 1.7a 1.5a 0.8b 1.3b 0.6b 0.7b 0.5b 0.6b

Quadsc 1.8a 1.6a 1.4a 0.8b 1.2b 0.6b 0.7b 0.5b 0.6b

Specific energy kW h km−1 N/A 1.9 1.9 1.6 1.7 1.4 1.5
consumption liter/100 km 43 39 35 N/A

MJ km−1 16.6 14.8 13.4 6.7 6.7 5.8 6.0 5.1 5.4

aThe higher heating value is used to calculate the equivalent energy content for diesel fuel. Energy loss in the refining and transport of
diesel is not considered.
b Energy loss in the process of electricity generation is not considered. The average energy efficiency of operating coal-fired power plants
and natural gas combined cycle power plants in the US is 34.1% and 44.7%, respectively (US Energy Information Administration (EIA)
2021).
c1 Quad equals 1 quadrillion (1015) BTU or 1.055 × 1018 J.

3. Results

3.1. Varied performance of electric trucks
The weighted-average specific end-use energy consumption for the national fleet of 1 MW h base-case electric
trucks is 5.8 MJ km−1 (1.6 kW h km−1), which is 55% lower than future diesel trucks (table 3 and figure 4).
We note that the higher energy efficiency of electric trucks needs to be balanced by energy loss at fossil fuel
power plants when considering the well-to-wheels energy efficiency. However, if electric trucks are charged
solely with renewable electricity, the vehicle-level fuel efficiency has more practical relevance as there are no
combustion-related losses from electricity generation. The highly-spatially-resolved model uncovers the vary-
ing impacts of real-world factors included in this study (e.g., truck speed, truck weight, and road grade) on elec-
tric trucks’ energy consumption. For example, a 1 MW h base-case electric truck would consume 4.8–8.3 MJ
(1.2–2.3 kW h) per km of vehicle distance traveled when driving in various operating conditions (figure 4).
We note that some real-world factors have a larger impact on electric truck’s specific energy consumption than
battery technology improvements.

The varied profiles of specific energy consumption in different highway corridors translate into a variable
driving range for long-haul electric trucks. The 1 MW h and 2 MW h electric trucks, assuming the base-case
scenario, could drive 365–702 km and 687–1297 km for a single charge (85% battery SOC) (table S4 and
figure S4 in the S.I.). For comparison, the vehicle range of a single-tank future diesel truck is 939–1706 km.
This comparison indicates that charging infrastructure planning may need to incorporate real-world driving
conditions, such as road grade and speed limits, in order to accommodate varying charging needs across the
nation.

Battery technology advancement is essential to close the performance gap between electric trucks and
diesel trucks. The fleet-average specific energy consumption for optimistic-case 1 MW h electric trucks is
5.0 MJ km−1 (1.4 kW h km−1), or 13% lower than base-case electric trucks due to reduced battery weight. For
the same battery capacity, the optimistic-case electric trucks could drive 73 km further, on a single charge, than
base-case electric trucks. With lighter freight, electric trucks could have a higher driving range, more likely to
achieve the same driving range as diesel trucks.

We note that our estimates for the fleet-average specific energy consumption are higher than those reported
in the literature (Davis and Boundy 2019, Tong et al 2015, Sripad and Viswanathan 2017). This was due to
three factors related to the ‘definition’ of long-haul trucks (Davis and Boundy 2019, Tong et al 2015, Sripad
and Viswanathan 2017). First, the high-roof tractor modeled in this study has a greater frontal area, resulting in
larger aerodynamic drag than those assumed in the literature (e.g., low-roof tractor) (Sripad and Viswanathan
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Figure 4. Corridor-average specific energy consumption of (1 MW h) electric and diesel truck. Each data point represents the
weighted-average specific energy consumption of electric trucks and diesel trucks driving in a corridor for vehicle end use
(excluding upstream energy consumption for fuel production and electricity generation).

2017). Second, long-haul trucks modeled in this work are heavier than those in the literature, which assumed
a predetermined, yet simplified, payload (Sripad and Viswanathan 2017). Finally, we included ‘real-world’
auxiliary loads (for heating, cooling, and electronic devices), which were excluded in existing studies (Sripad
and Viswanathan 2017).

3.2. The weight penalty of long-haul electric trucks
A crucial trade-off in electric truck design is between range and maximum payload. Compared to diesel trucks,
the battery capacity required to achieve a comparable range for electric trucks adds substantial weight. For the
base-case scenario (at 240 W h kg−1 battery specific energy), a 1 MW h battery weighs 4.2 tonnes or 50% of
the weight of a currently operating diesel tractor (S.I. table S4). Given federal regulation on GVW (maximum
weight of 36.3 tonnes), electric trucks’ increased weight will reduce the allowable payload. Hence a fleet of
electric trucks may require additional truck trips to haul the same cargo as a fleet of conventional trucks.

We show that a national fleet of 1 MW h base-case electric trucks could provide the same freight service level
as diesel trucks without increasing fleet-wide vehicle distance traveled (table 3). However, 2 MW h base-case
electric trucks would lead to a 10% increase in total vehicle distance traveled to compensate for reduced payload
capacity. In our pessimistic case, which relies on battery and truck technologies available today, 2 MW h electric
trucks would require a 65% increase in total vehicle distance relative to diesel trucks, whereas 1 MW h trucks
would only increase the total vehicle distance by 6% (table 3). However, with faster-than-expected battery
technology improvements (optimistic scenario), 2 MW h electric trucks could carry a reasonable payload (20.3
tonnes) for a much greater range (1154 km). In this case, electric trucks’ technical performance is closer to
future diesel trucks, which could carry a maximum payload of 24.5 tonnes for 1301 km.

3.3. Energy consumption of a national fleet of electric trucks
A shift from diesel trucks to electric trucks substantially reduces the fleet’s end-use energy consumption. A
national fleet of 1 MW h base-case electric trucks consumes 0.5 Quads (6 × 1017 J) of electricity (table 3).
For comparison, a nationwide fleet of more efficient future diesel trucks consumes 1.4 Quads (1.5 × 1018 J) of
diesel fuel. The savings in end-use energy consumption is owed to the fundamental thermodynamic constraints
of compression-ignited internal combustion engines. In contrast, electric motors’ efficiency can be as high as
90% (although additional energy losses may occur at power generation facilities) (Sripad and Viswanathan
2017).

3.4. The shape of the electric truck charging load curve
Truck electrification impacts the dispatch of power plants in the electric power grid. The total annual charging
load for a 1 MW h base-case electric truck fleet is 184 TW h (table 3), the equivalent of 5% of the US electricity
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Figure 5. Charging load profiles of 1 MW h base-case electric trucks for two truck departure scenarios: early-departure (top),
late-departure (bottom), and three charging power scenarios: 0.5 MW (left), 1 MW (middle), and 4 MW (right). FRCC, MRO,
NPCC, RFC, SERC, SPP, TRE, and WECC are regions defined by North American Electric Reliability Corporation (NERC)
(figure S1 in the SI). Each grid region was assigned a single time zone as follows: EST (UTC-5) for NPCC, RFC, SERC FRCC; CST
(UTC-6) for MRO, SPP, TRE; PST (UTC-8) for CA and WECC (non-CA).

load in 2018. Because the additional load will not be constant throughout the day, there will be hours when
electric trucks add more than 5% to system-wide load.

Based on our modeled driving and charging behaviors, the charging load profile for electric trucks is likely
to peak in the middle of the day (figure 5), but the exact timing of the daily peaks varies slightly across electric
grid regions. This results from the region-specific truck flow patterns and highway network topology as well
as the scope of the regional electricity grid regions (as determined by North American Electric Reliability Cor-
poration (NERC), see figure S1 in the SI for detail). In the early-departure scenario, the charging profiles for
electric trucks in SERC, RFC, and California have a narrow peak that spans 5–6 h, while the shapes of the charg-
ing load in other regions are flatter. In the late-departure scenario, the distribution of electric trucks’ departure
is less concentrated in time. As a result, the shape of the charging load becomes less peaky in most electric
grid regions. In both truck departure scenarios, there is a period of very low charging load (2 PM to 1 AM
in the early-departure scenario and 0–5 AM in the late-departure scenario), which is partly due to the 8 h
off-duty time required by regulation.

The daily peak of truck charging load is solely driven by long-haul truck operation. Electric trucks are likely
to charge during the trip because the energy stored in the battery might not meet the energy need for long trips.
As long-haul trucks provide a time-sensitive service, we assume trucks follow a sequence of driving, charging,
and idling activities after being dispatched from the trip origin. As a result, unlike passenger vehicles which are
usually charged before or after a trip, long-haul trucks are more likely to re-charge during a trip. Furthermore,
heavy-duty trucks (including long-haul trucks) are not used evenly across time. A recent study of >3.5 billion
records from weigh-in-motion traffic sensors shows that about twice the number of trucks operate during
the day (6 AM–7 PM) than during the night (0 AM–4 AM) (Nehiba 2020), implying that truck driving and
charging are more likely to happen during daylight hours. The results show an absence of large peaks in the
evening when drivers are expected to complete their trips because we assume 150 kW off-duty charging to
preserve battery health and minimize charging costs.

The shape of electric trucks’ charging load is sensitive to the truck departure scenario but is robust to
charging power, battery capacity, and battery technology development. Charging power determines the rate of
charging but does not change the energy to be charged. The higher the charging power, the peakier the shape of
the charging load. 2 MW h electric trucks lead to slightly flatter charging loads than 1 MW h electric trucks. This
is because 2 MW h electric trucks require less en-route charging and need more time in each charge session,
which is farther from each other in time, than 1 MW h electric trucks. Finally, battery technology development
does not have a noticeable impact on the shape of the charging load since the driving and charging assumptions
remain the same. However, battery technology development substantially impacts the magnitude of charging
loads, as advanced batteries reduce electric trucks’ energy consumption by alleviating the payload penalty.
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4. Discussion

4.1. The shape of the electric truck charging load
The load curve from a fully electrified fleet of long-haul freight trucks is distinctly different from that of
privately-owned EVs, whose charging peaks are likely to be in the evening hours when vehicles are parked
at home. We find that the single most important determinant of the temporal pattern of the load curve is the
dispatch of the trucking fleet, which is controlled by firms across the supply chain. Peak charging loads from
truck electrification may occur midday when the curtailment of renewable sources is most likely (figure 5).
This is promising as the rollout of renewables has resulted in a well-known ‘duck curve’ pattern when excess
electricity is generated from wind and solar power in the middle of the day (Coignard et al 2018). As charac-
terized by the ‘duck curve’, the integration of a large quantity of wind and solar energy in the current electric
power grid has caused negative electricity prices during the day and led to the need for a sizable ramping capac-
ity in the early evening (Coignard et al 2018). The temporal coincidence of truck electrification load and solar
irradiance suggests a potential synergy in powering truck electrification with solar photovoltaics installed in
the bulk electric grid or rooftop of charging stations. Thus, a transition to electric trucks could help mitigate
the ‘duck curve’ and facilitate a transition to a high-renewable electric power grid—especially when combined
with appropriate electricity pricing structures.

This paper further investigates the sensitivity of electric trucks’ charging profiles to non-truck-dispatch-
related factors ranging from truck battery capacity and battery technology to charging power. We find that the
daily peak shape is robust to these non-dispatch-related factors. However, there is significant residual uncer-
tainty because electric trucks are still in the development and pilot phases, and their exact roles in the long-haul
trucking sector are yet to be defined. More detailed, yet still confidential, data collected via electronic logging
devices, cellphones, and traffic sensors might shed new light on the long-haul operation and improve the char-
acterization of electric trucks’ charging loads (US Department of Transportation (DOT) 2015, Xu et al 2018,
Nehiba 2020).

Further, this paper assumed a single-driver long-haul operation, the prevalent form in the long-haul truck-
ing sector (Tong et al 2019). However, long-haul operations could also take other forms. For instance, sleeper-
cab long-haul trucks with a team of two drivers could drive day and night continuously, only stopping to
re-charge or load and unload cargo. In this case, the charging decisions are not subject to mandatory drivers’
rest times but are still constrained by the operating hours for warehouses, ports, and charging stations.

Finally, smart charging (V1G) reflects an increased level of coupling and integration between electric trucks
and the electric power grid. Smart charging may reduce charging expenses for the fleet owners, operating costs
for the electric power grid, or the total system costs, depending on the objective. In the case of smart charging,
different objectives may lead to distinct operating and charging decisions and various shapes of charging loads.
Smart charging is outside the scope of this study because of a substantial amount of data and assumptions
involved but is worthy of future research.

4.2. Uncertainty in end-use energy consumption from long-haul trucks
In this study, we strive to provide a first-order estimation of the end-use energy consumption from a nation-
wide fleet of future diesel and electric long-haul trucks. Furthermore, we aim to investigate the impacts of
some truck design and operation decisions, including driving speed, vehicle weight, road grade, on long-haul
truck end-use energy consumption. While we show that these factors have direct effects on the end-use energy
consumption of long-haul trucks and lead to far-reaching implications for the planning of charging infras-
tructure and electric grids through the estimated charging load, we note here that our consideration of the
‘real-world’ factors is far from complete. Fundamentally, we face the challenge of balancing the fine-resolution
modeling of truck operation (so that the results are accurate) and the need to ensure broad coverage of the
national long-haul fleet (so that the results are relevant). Furthermore, long-haul electric trucks are still being
designed and tested, and the actual operation data is proprietary, both of which add to uncertainty in how they
will be designed and operated.

In the context of this study, a few important limitations exist due to data availability that prevent the com-
plete modeling of long-haul truck operations. First, we used the most recent long-haul truck flow data, which
was dated in 2012. As truck electrification would take decades to substantially penetrate into the existing fleet,
it is very likely that truck flow patterns may change over time. Second, we did not model traffic congestion
and chose to use a single drive cycle in the estimation of the specific energy consumption of long-haul trucks.
Regarding electric trucks, we did not model the impact of extreme temperatures and excluded regenerative
braking. While we believe they do not affect the order-of-magnitude estimation of the total end-use energy
consumption, they may substantially impact the energy consumption of long-haul trucks in certain regions.
Thus, studies investigating the adoption of electric trucks or planning of charging infrastructure in specific
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regions should consider these ‘real-world’ factors more carefully and use the actual truck operation data where
possible.

Finally, we want to highlight here that the energy consumption estimated in this study is the end-use energy
that is used to power long-haul trucks directly. In the context of energy systems, end-use energy (such as diesel
or electricity) needs to be produced by primary energy (such as crude oil, coal, natural gas, or renewable energy
sources, wind or solar), which involves large energy losses from the combustion process or transportation. We
chose to focus on end-use energy because it is most relevant for vehicle operation and has direct impacts on
the estimation of charging load from electric trucks. However, a complete assessment of the energy impact
should account for the upstream energy consumption. Regarding electric trucks, it is challenging to estimate
the upstream primary energy demand for electricity generation as it would vary dramatically across grid mixes
and change over time as the grid evolves.

4.3. Challenges and opportunities for grid integration
It is challenging to build a national network of charging stations to power long-haul trucks from the per-
spective of electric power grid integration. Each 1 MW h base-case long-haul electric truck consumes about
850 kW h (assuming 85% battery SOC) for a driving range of 530 km. This amount of electricity is enough to
power 29 US households for one day (US Energy Information Administration (EIA) 2020). Meanwhile, a four-
lane charging station’s peak power would be above 4 MW, much higher than an extreme fast-charging station
for passenger vehicles. Furthermore, charging stations for long-haul trucks are likely to locate in rural areas
with poor infrastructure. Thus, the substantial energy and power needs of charging stations require upgrad-
ing existing infrastructure or building new infrastructure (such as transformer, distribution lines, and even
transmission lines). Although the study of technical solutions for grid integration is outside the scope of this
paper, we note that charging stations represent a unique opportunity to integrate renewable energy and onsite
energy storage technologies. These onsite distributed energy resources (DER) will reduce the grid integration
cost and increase charging stations’ resiliency. The charging load profiles should be leveraged in the technical
design and economic analysis of charging stations equipped with onsite DER technologies.

4.4. Broad society-relevant implications of truck electrification
It is expected that a shift from diesel trucks to electric trucks in the long-haul trucking sector will bring broad
social benefits, including decarbonization, elimination of tailpipe emissions of local air pollutants, and noise
reduction. However, this transition will take time, as vehicle turnover is a key limiting factor in the pace at
which any fleet can be electrified (Scown et al 2013). This study provides only a hypothetical snapshot of
what a fully electrified fleet would mean for the grid as opposed to a multi-year scenario where adoption and
infrastructure roll-out may vary by region. Truck electrification’s environmental impacts are sensitive to the
source and composition of electricity that electric trucks are charged to (Tong and Azevedo 2020, Tong et al
2021). The location-specific charging loads generated by the innovative modeling framework in this study will
support truck electrification’s design and implementation so that the future long-haul trucking sector will
deliver the expected social goods.
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