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A B S T R A C T

The growing adoption of battery electric vehicles creates a need for optimized charging strategies that manage 
energy demand and charging costs. This study uses a dataset of 49,693 parking events and 11,271 charging 
sessions, which are collected from 50 vehicles, to investigate the impact of potential charging sessions on optimal 
VGI charging strategies within different utility territories in the United States, each with distinct pricing 
mechanisms. Our cost-benefit analysis shows that drivers can save between $3000 and $5000 annually in high- 
electricity price territories, while in low-price territories, savings can reach up to $400. However, if drivers keep 
their current charging behavior, they can save between $1500 and $3000 annually in high-price territories and 
around $200 in low-price territories. Beyond financial benefits, optimal strategies reduce emissions by shifting 
charging sessions to hours with more renewable generation, which reduces CO2eq by up to 2 tonnes per vehicle 
each year on average. These results demonstrate the importance of potential charging behavior and pricing 
structures to maximize economic benefits. Our findings suggest that policy measures are necessary to support 
such programs. This study helps guide charging infrastructure planning and supports updating battery warranties 
to account for battery degradation caused by VGI participation.

1. Introduction

The growth of battery electric vehicles (BEVs) and renewable energy 
creates both opportunities and challenges for power systems [1]. BEVs 
reduce emissions from the transportation sector [2] and have the po
tential to support power systems with their battery storage capabilities 
[3]. One possible approach is Vehicle Grid Integration (VGI), which 
includes controlled unidirectional charging (V1G) and bidirectional 
charging through Vehicle-to-Grid (V2G). V1G manages charging times 
to help with load shifting. V2G allows energy to flow between BEVs and 
the grid, which can improve grid stability, support renewables, and 
reduce costs for drivers [3]. The success of VGI depends on several 
factors, which include charger cost and availability [4] and the potential 
impacts on battery life.

This study estimates the maximum economic benefits for drivers who 
join VGI programs under different electricity pricing structures. Since 
BEVs are parked for most of their lifetime [5], they can support the 
power grid without impacting driver convenience, and coordinating 
charging and discharging with renewable generation further improves 
grid stability without affecting driver convenience [6]. We examine how 

driving and charging behavior, charger speed, battery degradation, and 
rate plans affect the value of VGI. The analysis focuses on real-world 
behavior to identify barriers to participation and ensure benefits 
exceed costs. These results help show how optimal charging can deliver 
meaningful savings and encourage more drivers to adopt VGI.

Driver travel and charging behavior affect how often BEVs can 
support V1G and V2G. These behaviors impact the availability of vehi
cles for V1G and V2G services. Collecting empirical data on these be
haviors is challenging, which leads many researchers to generate 
synthetic charging profiles for their studies [4,7–9]. These studies show 
strong potential for V2G but often miss key details such as trip timing 
and routine driving behavior. As a result, they may lead to less accurate 
results. Thus, differences in daily driving and parking patterns can 
change how much flexibility drivers can provide and how often they can 
participate in VGI programs [10].

Charging speed also affects the value of VGI. The main economic 
principle is time-arbitrage. BEV charging falls into two categories AC, 
and DC fast charging. AC charging includes two levels under SAE J1772 
[11]. Level-1 uses 110 V and needs no special equipment. Level-2 uses 
220 V and requires a dedicated installation. Studies show that Level-1 
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limits V2G due to low power [4,7,12–14] while Level 2 provides enough 
speed to meet most needs [4,8,9,13,15–23]. Level-2 ranges from 1.44 to 
19 kW and is common at homes and workplaces. DC-fast charging 
(50–350-kW) is limited to public stations due to high cost. VGI is best 
suited for long-duration, low-rate, and low-loss AC events as compared 
to time-constrained DC-fast events. This study focuses on Level-2 char
gers between 6.6 and 19 kW, which offer the best mix of flexibility and 
practicality for home and workplace V2G.

This study also examines three charging speeds (6.6 kW, 12 kW, and 
19 kW) to evaluate their impact on VGI services and economic viability. 
Studies on Level 2 chargers typically focus on three power ranges: low 
(1.5–6-kW) [3,9,19], medium (6–12 kW) [4,8,13,15–18,20–23], and 
high (above 12 kW) [14]. Most studies on medium and high-power 
chargers focus on workplace locations due to the assumed limitation 
on household power availability. This assumption does not apply in 
areas with newer housing. Thus, we need to test how well high-rate 
bidirectional charging performs both at home and at work if house
holds install high-power AC chargers.

Battery degradation in BEVs is a concern for V2G programs [1]. 
Researchers use both theoretical and empirical methods to model it, but 
each has its limits. Theoretical models [9,12–14,16,18] simulate battery 
aging based on factors like charge-discharge cycles, depth of discharge, 
and temperature. These models help explain degradation but rely on 
assumptions that may not reflect real driving. Empirical models [15,17,
21] use real-world BEV data to estimate battery degradation over time. 
We follow this second approach and use observed data to build our 
degradation mode. The dataset used in this study is large enough to 
make the results useful for general analysis (30).

Electricity prices and rate structures also shape the economic feasi
bility of VGI. Many customers pay under Time-of-Use (TOU) tariffs, 
which encourage off-peak consumption by setting lower prices during 
low-demand hours. VGI participants may also arbitrage against the 
tariffs by charging at off-peak times and selling back to the grid at on- 
peak times. Both the average price and the size of the peak-off-peak 
gap influence how much value drivers gain from VGI.

Many studies use TOU rates to analyze the economic value of VGI 
[16,21,23,24]. These studies show that VGI value increases with larger 
TOU price gaps, which range from under $0.10 to approximately 
$0.60/kWh. Many utilities offer an EV-Specific TOU Rate (EV-Rate) plan 
in addition to a TOU plan. The EV-Rate plan is a response to the 
increasing electricity demand caused by EVs and, often, features a lower 
average price but a more extreme difference between on and off-peak 
prices. For example, in California’s PGE territory, the EV Rate gap rea
ches 32 cents in winter and 19 cents in summer, while the regular TOU 
Rate gap is only 21 and 3 cents, respectively.

Households and businesses pay fixed electricity rates, while utilities 
purchase electricity from regulated markets at dynamic prices. So If an 
operator aggregates enough vehicles, it may join these markets and 
respond to Real-Time (RT) prices, which reflect current grid conditions 
and needs. Several studies use day-ahead market prices to model the 
wholesale signals [8,9,12–14,18,20,22]. However, day-ahead prices 
matter more for generators that plan large energy deliveries through 
limited transmission lines. A VGI aggregator needs real-time prices on 
the consumer side to make fast and flexible decisions.

This study contributes to the field of VGI research in several ways. 
First, it utilizes empirical data to constrain VGI to observed behaviors, 
which utilizes a year-long dataset of actual BEV charging and driving 
behavior. This real-world data improves the accuracy of assessing when 
and where vehicles are available for VGI.

Second, it estimates how electricity tariffs shape the economic ben
efits of VGI and offers insights for tariff design. Third, it evaluates how 
different charging speeds influence VGI benefits, including the effect of 
required infrastructure upgrades.

2. Materials and methods

I. Charging Behavior and Potential Charging Sessions

This research uses a subset of data from the eVMT project, a multi- 
year study conducted across California between 2015 and 2020 [25]. 
The eVMT project collected detailed real-world driving and charging 
data from BEV owners who volunteered to participate in a long-term 
monitoring program led by the UC Davis Electric Vehicle Research 
Center. From this dataset, we selected 50 vehicles (14 Chevrolet Bolts 
and 36 T Model S) with approximately one year of uninterrupted data 
each. We collected data from 2015 to 2020, depending on when each 
driver joined the study. The sample includes vehicles with diverse travel 
patterns across various California regions, but it is not random or fully 
representative of the state’s entire EV population. Each vehicle 
contributed a second-by-second trip trajectory and charging sessions. In 
total, the dataset includes 49,693 parking sessions, of which 11,271 
included actual charging events. We clustered Parking sessions by 
location into home, work, or other destinations using the DB-Scan 
method [26]. This dataset should be interpreted as an empirical case 
study rather than a statistically representative sample of the broader EV 
population.

Fig. 1 summarizes details of vehicle use and charging behavior in this 
sample. Fig. 1-a shows most vehicle days are under 50 miles for daily 
travel. Fig. 1-b reveals that most charging happens at home using Level 2 
chargers, which account for about 62 % of total energy charged. Level 2 
makes up 74 % of all charging, followed by DC Fast at 16 %, and Level 1 
at 10 %. DC Fast charging takes place entirely at other (non-home, non- 
work) locations. Level 1 charging happens mostly at home, but its share 
is small. Workplace charging remains limited, contributing only about 5 
% of the total, almost all through Level 2. And finally Fig. 1-c displays 
the types of chargers used by different vehicle models. Most charging 
sessions fall within the Level 1 (0–2 kW) and Level 2 (4–12 kW) range. 
About 20 % of sessions occur at 0–2 kW, mostly from Chevrolet Bolts. 
Teslas dominate the 6–12 kW range, which accounts for over 40 % of all 
sessions. High-power charging above 12 kW makes up about 14 % of 
sessions, almost entirely from Tesla vehicles. This highlights that Teslas 
tend to use higher-powered chargers more often than Bolts.

As shown in Fig. 2-a, vehicles spend on average more than 600 min at 
home and the workplace, whereas the average time spent at other lo
cations is less than 210 min. The graph further reveals that the average 
parking time is closely related to the type of parking location, with home 
and workplace locations having the highest average durations. Fig. 2-b 
shows charging events at home and workplace locations last an average 
of approximately 300 and 270 min, respectively, compared to less than 
180 min for other locations.

Additionally, data from the eVMT dataset indicates that most vehi
cles require less than 60 miles of range per day, considerably lower than 
most electric vehicles’ full charge range. This finding suggests that a 
substantial portion of battery capacity remains unused daily, presenting 
an opportunity for V2G services without impacting the vehicle’s daily 
operational requirements. Given these insights, workplaces and homes 
emerge as optimal locations for implementing V1G and V2G charging 
strategies due to the extended duration of vehicles’ parking sessions, 
allowing for efficient energy exchange with minimal disruption to 
driving needs.

Considering home and workplace locations for implementing V1G 
and V2G charging strategies reveals a gap between average parking time 
and charging time. This indicates that vehicles are often parked but not 
plugged in at these charging locations. These unutilized parking sessions 
represent potential opportunities for additional charging events, 
providing operators with greater flexibility to manage V1G and V2G 
charging. By taking advantage of these sessions, operators can optimize 
energy transfer between the grid and vehicles when needed, enhancing 
grid stability and maximizing the benefits of V1G and V2G sessions. 
Therefore, it is crucial to evaluate the impact of these parking sessions 
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Fig. 1. Charging behavior and travel patterns of BEVs. (a) Distribution of daily VMT shows that most vehicle-days fall below 50 miles, with a long tail extending past 
200 miles. (b) Share of total energy charged, disaggregated by charging level (DC Fast, Level 1, Level 2) and location (Home, Work, Other). We observe that most 
energy is charged at home using Level 2 chargers. (c) Distribution of observed charger power by vehicle model. Each bar shows the share of charging sessions in a 
given power bin for Chevrolet Bolt and Tesla Model S. Level 1 (0–2 kW) and Level 2 (2–10 kW) ranges dominate, while Tesla vehicles also use higher-power charging.

Fig. 2. Parking and Charging Behavior of BEV Drivers at Various Destinations. (a) Figure-a shows the average daily time vehicles spend parked at home, work, or 
other locations. The angular width of each wedge reflects the frequency of trip destinations, while the radial length represents an average time parked at that location 
(in minutes). (b) Figure b splits this parking time into charging vs. non-charging sessions. Each wedge represents one of six categories: home charging, home parking 
(no charging), work charging, work parking, other charging, and other parking. The radial length indicates average time spent in each mode, and the angular width 
shows the frequency of sessions. Percentages indicate the share of total time across categories.
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on optimal charging strategies to fully leverage their potential. 

II. Battery Degradation

We use publicly available user-reported data from over 1800 T ve
hicles, spanning 2014 to 2024, which track battery range degradation 
over accumulated mileage and energy throughput. These data are 
separate from our eVMT dataset and serve as a proxy for real-world 
degradation trends. We fit a linear model to this dataset to provide a 
conservative estimate of battery value loss per kWh cycled. While 
degradation is not strictly linear, this approach avoids overfitting and 
gives us a practical estimate of the economic trade-off in our analysis.

Fig. 3 presents a detailed examination of the depreciation amounts in 
relation to cumulative kWh charged, explicitly focusing on Tesla vehi
cles over a ten-year period from 2014 to 2024. The linear trend, with a 
slope of approximately $0.0215 per kWh, indicates a modest increase in 
depreciation cost as cumulative kWh charged increases. This suggests a 
direct but relatively small relationship between energy charged and 
battery wear. However, the variability in data points around this trend 
line highlights those factors beyond the kWh charged, such as driving 
habits, environmental conditions, and battery management systems, 
which influence battery depreciation rates.

This graph shows the linear trend showing how battery depreciation 
increases as cumulative kWh charged grows. For every kWh charged, 
BEV owners lose approximately 2 cents of battery value, calculated 
based on 2023 prices. The red line represents the best-fit, highlighting 
the direct relationship between energy charged and depreciation 
amount. This model serves as a baseline for assessing the economic 
impact of participating in V2G programs, factoring in the gradual loss of 
battery value over time.

For V2G applications, understanding this depreciation relationship is 
necessary as it allows for optimizing V2G operations without excessively 
accelerating battery degradation. Knowing the depreciation cost can 
help develop strategies that maximize economic benefits while preser
ving battery health. For instance, an 80-kWh battery is shown to 
depreciate by less than $1700 after 1000 full charge cycles, suggesting 
that significant depreciation costs are unlikely in the short term.

Battery degradation in this study is estimated based on the cumula
tive energy charged during charging sessions. This approach serves as a 
proxy for estimating the effect of V2G operations, using the energy 
charged and discharged during bidirectional activities. While 

degradation is influenced by factors such as temperature, depth of 
discharge (DoD), and charge or discharge rate (C-rate), the linear rela
tionship used here provides a simple and transparent estimate. The C- 
rate during normal driving ranges from about 0.5 C to 2 C, while Level 2 
charging or discharging at 6.6–19 kW corresponds to about 0.08–0.25 C 
for an 80 kWh battery. Because the degradation data used in this model 
come from driving conditions, they reflect higher C-rate stress than 
expected during V2G operation. As a result, the estimated degradation is 
likely overestimated and represents a conservative upper bound of 
battery degradation, which ensures that the economic benefits of VGI 
are not overstated.

The optimal charging program was formulated and solved using a 
linear programming approach. The objective of the optimization pro
gram is to minimize the total cost, which includes the electricity cost and 
battery degradation cost, to meet the charging demand of the vehicles.

This study estimates total depreciation using the 2021 price of a 1- 
kWh battery pack, which is 139 [27]. Battery degradation is a key fac
tor influencing the economics and practicality of V2G programs, as it 
constrains overcharging and over-discharging. A linear model is devel
oped based on the observed relationship between battery capacity and 
mileage. The collected data on driving efficiency [28] was used to 
convert mileage into energy charged and link battery degradation 
directly to reductions in health and capacity.

This model uses data from various Tesla models, comprising 1800 
data points [29]. Fig. 4-a visualizes this data, showing the remaining 
vehicle range after a full charge over various mileage levels from 2014 to 
2023. This highlights a clear downward trend in battery health as the 
vehicle accumulates miles. Fig. 4-a shows that as vehicles accumulate 
mileage, their remaining battery capacity gradually decreases, but this 
decline is not uniform. For example, vehicles with over 150,000 miles 
generally report battery capacities of around 80–90 % of their original 
capacity. This trend provides insight into the real-world performance of 
BEV batteries over time, emphasizing that while some battery degra
dation is inevitable, significant losses in capacity occur primarily after 
extensive use.

Fig. 4-b establishes a linear regression model that links the kWh 
charged to the remaining battery capacity to further analyze the impact 
of charging on battery degradation. This real-world data helps quantify 
the degradation cost per kWh of energy, which is critical for estimating 
the long-term economic impact of frequent charging.

The slope of the regression line indicates a modest rate of decline in 

Fig. 3. Relationship Between Battery Depreciation and Cumulative kWh Charged in BEVs.
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battery health as more energy is cycled through the battery. For 
example, after charging approximately 80,000 kWh, the battery retains 
about 80–85 % of its original capacity. The relationship here provides a 
crucial proxy for estimating how V2G operations involving frequent 
charging and discharging could impact battery lifespan. Importantly, 
this model assumes that the degradation rate is consistent with driving 
and V2G discharging, giving researchers a tangible metric to quantify 
the trade-offs between potential revenue from V2G participation and the 
increased degradation of the battery. 

III. Electricity Grid Dataset

The electricity pricing scenarios used in this study include two rate 
structures offered by Pacific Gas & Electric (PGE) in California, 
Duquesne Light Company (DLC) in Pennsylvania, Con Edison (ConEd) in 
New York, and Austin Energy (AE) which are TOU-Rates, commonly 
used by most households, and the EV-Rate plan designed for BEV 

owners. Additionally, a RT-Rate was introduced in this study to simulate 
wholesale market pricing.

The TOU-Rate is widely used by utilities customers and adjusts 
electricity prices based on peak and off-peak hours, which encourage 
consumers to shift usage to lower-cost periods. The EV-Rate plan, 
introduced by utility operators for BEV owners, offers more advanta
geous pricing structures for charging vehicles, making it more attractive 
for households with electric vehicles. The final rate structure considered 
is RT-Rate, which fluctuates based on current grid demand and supply 
conditions, offering the most dynamic pricing model. However, since 
vehicles are typically located on the consumer side of the grid, direct 
access to wholesale market prices (RT-Rate) is not available. To incor
porate this, we estimate RT-Rate at the consumer level to simulate the 
potential financial benefits of aligning charging behavior with fluctu
ating grid prices. This approach ensures we account for the variability in 
electricity costs while considering practical consumer-side constraints.

The TOU and EV-Rate plans offered by PGE, ConEd, show a large gap 

Fig. 4. Reported and Estimated Battery Capacity Degradation for Tesla Models Based on Mileage and kWh charged. 
(a) The graph shows the reported remaining battery capacity versus miles traveled for various Tesla models. The data points represent battery health, with colors 
denoting the vehicle model and circle sizes indicating battery capacity (kWh). It shows that drivers can expect approximately 85 % of their battery capacity to remain 
after driving 200,000 miles. (b) The estimated battery capacity is shown as a function of kWh charged. The blue points represent data from Tesla vehicles, while the 
red line shows the best-fit linear regression. The result indicates the linear relationship between remaining battery capacity and cumulative kWh charged, showing a 
gradual decline. On average, drivers lose about 1.42e-6 of battery capacity for every kWh charged.

Table 1 
Detailed electricity pricing structures for TOU, EV-Rate, and commercial rate across four California utility territories[30–33].

Utility Pricing 
Scheme

Season Weekday Prices (Peak/Mid-Peak/Off-Peak, 
$/kWh)

Weekend Prices (Peak/Mid-Peak/Off-Peak, 
$/kWh)

Month 
Range

Peak 
Times

Mid-Peak 
Times

PGE TOU-Rate Summer 0.610/N/A/0.500 0.610/N/A/0.500 6–9 16–21 N/A
Winter 0.490/N/A/0.460 0.490/N/A/0.460 10–5 16–21 N/A

EV-Rate Summer 0.640/0.530/0.320 0.640/0.530/0.320 6–9 16–21 15–16, 21–24
Winter 0.510/N/A/0.320 0.510/0.490/0.320 10–5 16–21 N/A, 21–24

Commercial Summer 0.298/0.078/0.102 0.298/0.078/0.102 6–9 16–21 9–14
Winter 0.298/0.078/0.102 0.298/0.078/0.102 10–5 16–21 9–14

DLC TOU-Rate Summer 0.091/N/A/0.091 0.091/N/A/0.091 6–11 0–24 N/A
Winter 0.088/N/A/0.088 0.088/N/A/0.088 12–5 0–24 N/A

EV-Rate Summer 0.125/0.079/0.057 0.125/0.079/0.057 6–11 13–21 6-13, 22-23
Winter 0.125/0.079/0.057 0.125/0.079/0.057 12–5 13–21 6–13

Commercial Summer 0.153/0.096/0.068 0.153/0.096/0.068 6–9 13–21 6-13, 22-23
Winter 0.194/0.129/0.104 0.194/0.129/0.104 10–5 13–21 6–13

ConEd TOU-Rate Summer 0.352/N/A/0.024 0.352/N/A/0.024 6–9 8–24 N/A
Winter 0.130/N/A/0.024 0.130/N/A/0.024 10–5 8–24 N/A

EV-Rate Summer 0.330/N/A/0.023 0.330/N/A/0.023 6–9 8–24 N/A
Winter 0.122/N/A/0.023 0.122/N/A/0.023 10–5 8–24 N/A

Commercial Summer 0.524/N/A/0.019 0.524/N/A/0.019 6–9 8–22 N/A
Winter 0.258/N/A/0.019 0.258/N/A/0.019 10–5 8–22 N/A

AE TOU-Rate Summer 0.108/N/A/0.108 0.108/N/A/0.108 6–9 0–24 N/A
Winter 0.108/N/A/0.108 0.108/N/A/0.108 10–5 0–24 N/A

EV-Rate Summer 0.108/N/A/0.108 0.108/N/A/0.108 6–9 0–24 N/A
Winter 0.108/N/A/0.108 0.108/N/A/0.108 10–5 0–24 N/A

Commercial Summer 0.158/N/A/0.158 0.158/N/A/0.158 6–9 0–24 N/A
Winter 0.158/N/A/0.158 0.158/N/A/0.158 10–5 0–24 N/A
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between peak and off-peak electricity price hours (Table 1). In many 
cases, peak rates can exceed $0.60 per kWh with a range of about $0.61/ 
kWh to $0.64/kWh, while off-peak EV-Rates may drop below $0.30/ 
kWh in PGE. These large price gaps encourage BEV owners to charge 
during off-peak hours, which can help lower grid stress, make less 
dependent on fossil fuel generation, and increase the share of renewable 
resources in the generation mix. Given the state’s focus on renewable 
energy and grid optimization, these rates offer a distinct advantage for 
BEV owners [30]. However, AE has lower overall rates and a flat pricing 
structure in comparison with utilities. This flat structure means AE 
customers have less financial motivation to shift all their charging to 
off-peak times.

PGE’s electricity rate is higher than the rates in states like Texas and 
Pennsylvania. The average electricity rate in Pennsylvania is about 
8.9¢/kWh, while Texas rates are flat and are 10.8¢/kWh. The large gap 
between peak and off-peak prices in California’s TOU and EV-Rate plans 
suggests a strong economic incentive to shift energy consumption away 
from peak hours. However, the elevated rates may discourage con
sumers from adopting BEVs without clear savings through optimal 
charging strategies.

We need RT-Rates on the consumer side so vehicles can respond 
effectively to grid conditions, which include for congestion pricing and 
power losses and utility company profit. Fig. 5 displays RT-Rate signals 
for 2023 at the PGE, DLC, ConEd, and AE nodes. Because these rates are 
only provided at the generation level, an adjustment is required to 
reflect distribution-side factors, where vehicle charging and discharging 
occur. This adjustment considers transmission limits, congestion, and 

profit for utility operators. We assume a third-party aggregator co
ordinates vehicle charging based on the RT electricity signal. Fig. 5
shows the adjusted consumer RT-Rate, which considered these con
straints. Equation (1) shows how the adjustment factor is estimated and 
applied to the generation-side local marginal price (LMP) to estimate a 
real-time price on the consumer side. Equation (1) applies a scalar 
multiplier to wholesale LMPs to reflect real-world adjustments utilities 
make when setting consumer-facing rates, including allowances for 
distribution system losses, non-energy costs, and regulated profit mar
gins. This approach allows the aggregator to optimize vehicle charging 
schedules according to real-time grid conditions while also taking utility 
company costs and profits into account in the final price. 

∑24

t=1
Cload

t .CTOU rate
t =ω

∑24

t=1

∑n

j=1
Cload

t,j .CLMP
t,j (1) 

n ∈ {PG&E nodes}

In this Equation, Cload
t represents the demand load at time t on the 

consumer side, and CTOU rate
t is the TOU-Rate applied at that time. On the 

generation side, Cload
t,j and CLMP

t,j correspond to the load demand and LMP 
at time t at node j, respectively, with n representing the utility nodes.

Solving this equation returns ω, which is the scaling factor that 
converts RT-Rates from the generation side to prices on the consumer 
side. This formulation ensures the alignment of real-time pricing signals 
with demand and supply conditions. The implications of these pricing 
mechanisms can encourage drivers to participate in vehicle-to-grid 

Fig. 5. Comparison of Wholesale and Consumer Real-Time Electricity Prices for Four Utilities. Each row represents one utility company (PGE, DLC, ConEd, AE). The 
left column shows real-time wholesale prices (locational marginal prices, LMPs), and the right column shows estimated consumer prices after adjusting for distri
bution losses, administrative fees, and utility margins. These prices represent the rates that flexible EV charging would face under real-time pricing. Price spikes vary 
across territories. PGE shows fewer but intense peaks, with consumer prices reaching over $7500/MWh. DLC and ConEd experience more frequent but moderate 
spikes, often between $500 and $1500/MWh. AE has the fewest price spikes, but some peaks exceed $2500/MWh.
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programs. Higher electricity prices in PGE, ConEd, and AE burden BEV 
owners more, but they also create more incentives for optimal charging 
behavior, particularly with V2G programs. The broader rate gap offers 
incentives to shift charging to off-peak periods. Thus, with this shift, 
V2G participation will become more financially attractive. However, 
utility territories with lower rates and less fluctuation rates, like DLC, 
may not provide the same financial incentive for V2G programs. 

IV. Problem Statement

The optimal charging framework considers various decision-making 
factors, such as vehicle plugin sessions, charging types (V1G and V2G), 
charging locations, charging speeds, and pricing mechanisms (TOU, EV- 
Rate, and RT-Rate). Additionally, the optimization process considers the 
drivers’ travel behavior needs in real-time to determine the most effi
cient charging rate by considering factors such as the vehicle’s state of 
charge (SOC), battery capacity, and energy demand for each time in
terval (Fig. 6).

The flowchart illustrates the decision-making process for optimizing 
BEV charging and discharging behavior based on multiple electricity 
rates (TOU, EV-Rate, RT-Rate) and the vehicle’s charging behavior 
characteristics. Starting with the electricity rate plan and the vehicle’s 
status (driving or parked), the model calculates energy consumption or 
gathers input data when parked, such as departure time, location, and 

required state of charge (SOC) for the subsequent charging. The system 
assigns the optimal charging or discharging rate, considering energy 
prices, charging efficiency, and battery degradation costs. Battery 
degradation is monitored throughout, and costs are incorporated into 
the charging strategy. The process ensures that the battery reaches the 
desired SOC while minimizing costs and battery degradation, creating 
an optimal charging schedule for the given electricity rate and vehicle 
conditions. The decision flow accounts for real-time updates in the 
BEV’s status and grid signals, leading to efficient charging and dis
charging strategies.

The mathematical formulation of the optimal charging model aims to 
minimize the total cost of vehicle charging while considering drivers’ 
travel needs and economic factors. The objective function considers two 
primary components: charging cost and battery degradation costs.

Equation (2) shows the cost function in this study, which is struc
tured as follows: 

Min imize
∑

v∈V

∑

t∈T

(
ECt . Xchv,t +BattCv,tch

)
(2) 

Where ECt is electricity price at time t, Xchv,t is the amount of electricity 
charged by vehicle v at time t. Also BattCv,tch is battery degradation cost 
of charging vehicle v at time t. 

1. SOC Balance Constraint

Fig. 6. Decision-making flowchart for optimizing BEV charging and discharging strategies.
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The SOC for vehicle v at time t is calculated based on the SOC of the 
vehicle at time t-1, considering any charging occurring during this hour 
and any travel that occurred during this hour. Both charging and driving 
activities can take place within 1-h intervals, as this study uses a 1-h time 
interval. 

SOCv,t = SOCv,t− 1 +

(
Xchv,t . effch

Battv

)

*100 − Cchv,t (3) 

Where SOCv,t is SOC of vehicle v at time t, effch is charging efficiency of 
BEVs, which is considered %95 in this study, Battv is battery capacity of 
vehicle v, Cchv,t is total kWh consumed by vehicle v at time t. 

2. Minimum Charging Rate Constraint

In this study, the discharging rate is constrained to various level-2 
charging rates ranging from 6.6 kW to 19 kW. This constraint ensures 
that the discharging rate does not exceed the assigned value, thereby 
maintaining the practicality of V2G operations. At each location (Home, 
Work), the discharging rate is set based on the charger’s capacity, 
allowing the operator to effectively manage and optimize the dis
charging program. 

Xchv,t ≥

{
− Maxt,l ∈ {6.6,12, 19 } kW,V2G,

0 ∈ {6.6,12,19 } kW,V1G (4) 

Xchv,t ≤

{
Maxt,l ∈ {6.6,12, 19 } kW,V2G,
Maxt,l ∈ {6.6,12,19 } kW,V1G (5) 

3. Maximum DC-fast Charging Rate Constraint

One of the most critical constraints in BEV charging is the limitation 
during DC-fast charging. This study considers different DC-fast charging 
rates for different model based on the actual data. For instance, the Tesla 
Model S can handle up to 150-kW, while the Chevrolet Bolt can handle 
up to 50-kW. This unique constraint helps to achieve realistic charging 
behavior. This is a key insight often overlooked in other research where 
a single charging rate is assumed for all vehicles in case studies. 

Xchv,tchDC
≤

{
150 kW,Tesla,
50 kW,Bolt (6) 

4. Minimum SOC at Departure Constraint

Having a full year of real BEV data allows us to understand actual 
BEV charging behavior. This comprehensive data helps estimate dy
namic energy requirements at the end of charging sessions, ensuring 
sufficient energy to reach the next session. To avoid fully depleting the 
battery and maintain its health, a 15 % SOC buffer is considered, pre
venting the battery from dropping below 15 % and ensuring drivers have 
enough charge for their needs. 

SOCv,tdep = SOC REQv,tdep + %15 (7) 

Where SOCv,tdep is the SOC of the vehicle v at the departure time and 
SOC REQv,tdep is the SOC that vehicle v needs at the departure time to 
reach to the next charging sessions without any trips’ disruption. 

5. SOC Buffer Constraint

Another buffer constraint is applied hourly during discharging ses
sions to prevent over-discharging, which can harm battery health. To 
protect the battery, the SOC must remain above 15 %, ensuring the V2G 
process does not cause deep discharges and safeguards battery 
longevity. 

SOCv,tchv2g
=%15 (8) 

Where SOCv,tchv2g 
is SOC of vehicle v at discharging during V2G optimal 

charging program. 

6. Battery Degradation Constraint

The battery degradation model uses historical data to analyze battery 
health relative to the distance traveled. It estimates the required charge 
and calculates the cumulative charge for each vehicle. Equations (8) and 
(9) determine the charge amount and estimate total degradation. The 
degradation cost, based on the degradation level, is then included in the 
objective function. 

BattDv,tch =D slopev.
∑

t=1
Xchv,tchv2g

(9) 

BattCv,tch =BattDv,tch − BattDv,tch− 1 (10) 

Where BattDv,tch represents the cumulative depreciation of battery of 
vehicle v at time tch which indicates the charging sessions. D slopev is the 
slope of the linear regression that correlates cumulative charges of the 
vehicle with the depreciation amount of the battery. BattCv,tch denotes 
degradation cost at the time interval t. 

V. Post-Processing Analysis for Identifying Optimal Charging Scenarios

The post-processing framework estimates the long-term economic 
viability of V1G and V2G participation by calculating discounted cost 
savings and accounting for battery replacement costs. The approach uses 
an adjustment factor to model real-world pricing and incorporates bat
tery degradation costs, infrastructure costs, and discounting over the 
study duration. The total cost savings are calculated using Equations 
10–13, which applies discounting and accounts for battery replacement 
costs and charging infrastructure expenses. This process ensures that the 
estimated net savings reflect real-world conditions, including battery 
replacement cost due to the degradation if the battery health drops 
under %80 from increased cycling due to V2G. 

1. Annual Savings with Discounting

The first component of the post-processing is the calculation of 
annual savings. This is determined by comparing the electricity cost 
under baseline pricing mechanisms (TOU or EV-Rate) with the optimal 
charging cost for each vehicle. The annual savings are then discounted 
over the expected lifetime of the vehicle using a 5 % interest rate to 
represent the time value of money: 

Discounted Annual Saving=
∑nv

v=1

∑Tv

t=1

CB − Copt

(1 + i)t (10) 

Where nv is the total number of the vehicles, Tv is the total lifetime of the 
battery under the regular V1G charging, and i is the discount factor, 
which in this study is considered 5 %. 

2. Battery Replacement Costs

The second component considers battery replacement cost, which is 
modeled based on each vehicle’s charging behavior and driving pat
terns. The function estimates the number of battery replacement cycles 
required over the study period based on the total battery lifetime under 
regular V1G charging before a replacement is needed. The cost of each 
battery replacement is discounted to its present value using the same 
interest rate: 

H. Tayarani et al.                                                                                                                                                                                                                               Energy 341 (2025) 139302 

8 



Discounted Battery Cost=
∑nv

v=1

∑λc

c=1

ρc × Bv

(1 + i)Replacement Yearc
(11) 

Where λc total number of replacement cycles if the vehicle participates 
in the V2G program, ρc is the battery pack price/kWh derived from 
Ref. [27] for the year of the replacement and Bv is the battery capacity of 
the vehicle v. 

3. Charging Infrastructure Costs

The framework also includes the upfront cost of charging infra
structure. For V2G scenarios, a one-time cost of bidirectional chargers is 
derived from Ref. [34]. For V1G scenarios, the cost depends on the 
charging speed, with higher costs assigned to 19 kW chargers compared 
to 6.6 kW and 12 kW chargers [35]: 

ICv =

⎧
⎨

⎩

BC if V2G
UC1 if V1G 12 kW
UC2 if V2G 19 kW

(12) 

The optimal charging scenario for each vehicle is identified as the 
one that provides the highest value, returned by Equation (13). 

∑nv

v=1

(
∑Tv

t=1

CB,v − Copt,v

(1 + i)t −
∑λc

c=1

ρc × Bv

(1 + i)Replacement Yearc
− ICv

)

(13) 

VI. Sensitivity Analysis

This study tests how sensitive the results are to key technical and 
policy parameters that shape the value of V2G. The analysis includes 
battery pack replacement cost, bidirectional charger upgrade cost, 
charger efficiency, and the social cost of carbon (SCC).

Battery replacement cost varies across three cases, baseline, 10 % 
lower, and 20 % lower, which represent future cost reductions from 
mass production and technology improvement. Bidirectional charger 
upgrade cost also varies across baseline, 10 % lower, and 20 % lower 
because of the same effects of mass production and technology 
improvement. Charger efficiency ranges from 0.90 to 0.96, covering the 
typical performance of most hardware and inverters. The SCC takes 
three levels, which are 0 $/tonne CO2 representing current conditions 
where consumers do not pay for carbon emissions, 191 $/tonne CO2 
based on the EPA 2023 central estimate, and 280 $/tonne CO2 as a high- 
policy case. Each parameter changes independently while other as
sumptions remain fixed.

3. Result

I. Cost-benefits

This section analyzes the annual value of VGI strategies. The main 
optimization includes battery degradation costs but excludes infra
structure upgrades, battery replacement, and discounting, since these 
costs remain constant and will be evaluated in post-processing. Two 
scenarios for bidirectional charger locations were evaluated: at home 
and work, and only at home. Although charging can happen at any 
location, discharging to the grid is limited to the selected locations. We 
consider four different utility territories across the US, including Pacific 
Gas & Electric (PGE) in California, Duquesne Light Company (DLC) in 
Pennsylvania, Con Edison (ConEd) in New York, and Austin Energy (AE) 
in Texas, each with a different pricing structure. 

a. TOU-Rates Plan

The results for the TOU pricing scenario show variations in the 
benefits of optimal charging strategies among the four utility territories 
studied (Fig. 7). These benefits reflect potential savings or revenue by 

subtracting electricity and battery degradation costs from the baseline 
scenario. The highest savings happen in ConEd, where vehicles with 19 
kW bidirectional chargers save over $4000 on average. This outcome is 
mainly due to ConEd ‘s large gap between peak and off-peak and the 
timing of tiers in its TOU-Rates. These two factors can increase financial 
returns for drivers who participate in V2G. In PGE territory, 19 kW 
chargers also produce high savings, although less than in ConEd. Higher 
returns from faster chargers reflect the charger’s ability to transfer more 
energy during periods with larger price differences. DLC and AE show lo- 
wer benefits compared to other territories, with maximum savings under 
$700 for all charging speeds. This result is caused by DLC and AE’s flat 
TOU-Rate structure.

Across all regions, 12 kW chargers provide moderate savings, while 
6.6 kW chargers offer the least. Slower charging limits energy arbitrage 
and reduces benefits. Electricity pricing also matters. Territories with 
larger price gaps, like ConEd and PGE, offer greater incentives, while flat 
rates in DLC and AE lower V2G value. These results show that both 
pricing and charging speed shape the economic potential of V2G. 

b. EV-Rates Plan

The second set of graphs for all utility territories shows how EV-Rate 
pricing affects the value of VGI (Fig. 7). The lower off-peak price and 
wider gap between peak and off-peak rates in EV-Rate structures lead to 
larger economic benefits for VGI. ConEd and AE provide meager savings 
under the EV-Rate, with an additional benefit less than $50 in compare 
with TOU-Rate, whereas PGE can offer additional benefit as much as 
$2500 for the 19 kW charging speed. This gap of over $2500 highlights 
how each utility’s rate structure shapes the financial attraction of V2G 
and other optimal charging strategies.

Higher speeds provide diminishing returns for EV-Rate tariffs. 
Although 19 kW chargers bring the highest savings, the extra amount 
earned over 12 kW chargers is often small. In DLC, ConEd and AE, for 
instance, the difference is below $100. This means that while higher 
speeds can transfer more energy during valuable price windows, the 
added costs for faster charging equipment may not always be justified. 
There is also little difference in savings between installing a bidirec
tional charger only at home versus installing chargers at both home and 
work.

EV-Rate pricing can increase financial returns for BEV owners, 
especially when there are bigger peak-to-off-peak price gaps. However, 
the benefits of higher-speed chargers and dual installations appear 
limited. In many cases, a 12 kW bidirectional charger can achieve the 
majority of cost savings. 

c. Real-Time Rates Plan

This section compares the economic benefits of optimal VGI under 
RT-Rate with those of uncontrolled charging at the same rate. In PGE, 
uncontrolled charging under RT-Rates costs more than under TOU and 
EV-Rates (Fig. 7). This higher cost explains why residential customers 
prefer a tiered price structure to reduce the risks from real-time price 
fluctuations. However, drivers who use optimal charging with RT-Rates 
may achieve much higher financial benefits than TOU or EV-Rates. For 
example, in PGE territory, optimal V2G with a 19 kW bidirectional 
charger under RT-Rates can save up to $10,495, which is much higher 
than the $3746 and $6135 savings possible under TOU and EV-Rates, 
respectively.

Across all territories, the additional profit from having two chargers 
in no change in plugging behavior is usually under $100 compared to a 
single home charger, which is insufficient to cover the infrastructure 
upgrade cost of the second charger. However, if drivers plug in more 
often during parking sessions, a single bidirectional home charger can 
increase benefits by over 25 % in most territories, except PGE and AE. 
This suggests that home-only V2G may be the most cost-effective option 
in many regions. Also, battery degradation costs are higher under RT- 
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Fig. 7. Average Net Benefit and Battery Degradation Costs for V1G and V2G Under Different Pricing Schemes Across Four Utility Territories. Each row corresponds to 
one of the four utilities in the US (PGE, DLC, ConEd, and AE), and the columns compare: 1- TOU-Rate optimal charging vs. TOU baseline, 2- EV-Rate optimal charging 
vs. EV-Rate baseline, 3- RT-Rate optimal charging vs. RT baseline. The RT-Rate consistently provides the highest net benefits, especially at the 19 kW charging speed. 
The EV-Rate delivers the second-highest returns due to the higher gap between peak and off-peak prices. V1G provides smaller benefits compared to V2G in the 
“plugging in when parked” scenario. However, in the “no change in plugging” scenario, especially in regions with flatter electricity price structures, the net benefits of 
V1G and V2G are very close. Battery degradation costs are largely offset by the substantial V2G and V1G savings. The degradation costs for using one or two 
bidirectional chargers are nearly the same, so their values overlap in most cases. However, smart charging has much lower degradation costs than bidirectional 
charging, except in regions with flat electricity rates.
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Rates due to longer V2G windows and more cycling. However, the 
economic gains often outweigh these costs. In PGE, for example, drivers 
can save over $10,000 using optimal high-speed V2G charging.

Territorial differences matter as well. DLC, which has relatively low 
electricity prices, sees only modest improvements in RT-Rate profits 
compared to TOU-Rates, especially when compared to PGE and AE. In 
contrast, territories like PGE and AE, where the price gap under RT- 
Rates is larger, allow drivers to earn more from optimal charging 
strategies.

Charging speed affects the financial benefits of VGI, but the gains 
from moving beyond 12 kW depend on charging behavior. If drivers 
change their charging behavior, the benefit from faster charging de
pends more on regional prices. In PGE, where real-time prices fluctuate 
sharply, the benefit from 19 kW charging can exceed $2000. In most 
territories, 12 kW chargers provide the best cost-performance balance. 
Real-time rates raise VGI profitability and may attract drivers who 
respond to price signals. 

II. Virtual Miles as a Measure of V2G Battery Impact

V2G raises concerns about balancing the battery’s intrinsic and 
extrinsic value. The intrinsic value relates to preserving the battery’s 
capacity for reliable driving over its lifetime, while the extrinsic value 
reflects revenue from selling energy and supporting the grid. V2G in
creases battery use, which may lead to faster degradation and a shorter 
lifetime. The concept of “virtual miles” helps us see how V2G affects 
battery life by linking the discharged energy to actual miles driven. 
Fig. 8 shows how virtual miles vary by region. Although patterns are 
broadly similar, pricing structure and charging behavior cause notice
able differences.

High-power Level-2 chargers (19 kW) lead to the highest virtual 
miles. Under the RT-Rate, virtual miles range from 53,000 in ConEd to 
over 84,000 in PGE when drivers change their charging behavior. When 
drivers follow the EV-Rate, virtual miles drop in PGE and AE, while DLC 
and ConEd show only a small change. This suggests that in PGE and AE, 
the EV-Rate lowers the financial incentive to discharge energy back to 
the grid.

However, if drivers keep their current plug-in behavior, the virtual 
miles are much lower. Virtual miles in this scenario range between about 
10,000 and 40,000 miles under the RT-Rate, depending on the region. 

Fig. 8. Distribution of Virtual Miles Under Various Charging Speeds, Behaviors, and Pricing Schemes Across Four Utility Territories. These boxplots show the 
distribution of virtual miles accumulated annually under V2G scenarios in four utility service regions. Virtual miles measure how much battery degradation is 
imposed on the vehicles from V2G, which equals the energy needed to drive that many miles. Each panel compares two driver behaviors (“plugging in when parked” 
vs. “no change in plugging behavior”), three charging speeds (6.6 kW, 12 kW, and 19 kW), and two pricing mechanisms: EV-Rate and RT-Rate. We exclude the TOU- 
Rate here because Fig. 7 shows it performs worse than both the EV and RT-Rate structures in terms of cost savings. If drivers choose to participate in V2G, they are 
more likely to opt into the EV or RT rate plans. Each boxplot shows the interquartile range (IQR), median, and 1.5 × IQR whiskers. Circles represent outliers beyond 
the whiskers. Notably, in “plugging in when parked” scenarios, vehicles using 19 kW chargers may exceed 100,000 virtual miles/year, aligning with warranty 
thresholds used by automakers.
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PGE and AE show a sharp drop in virtual miles under the EV-Rate. In AE, 
most vehicles stay below 1000 virtual miles under EV-Rate. In contrast, 
DLC and ConEd show only a slight difference between the EV and RT- 
Rates. Virtual miles in these regions stay mostly stable. These results 
show that charging behavior and local rates shape how much battery 
degradation drivers face from V2G. 

III. Emissions Impacts of Optimal Charging Strategies

Optimal charging strategies also reduce GHG emissions. Although 
the model focuses on cost, shifting charging times lowers reliance on 
peaker plants, which reduces total emissions. Drivers who follow these 
strategies help cut environmental impacts. Fig. 9 compares annual CO2eq 
reductions under the RT-Rate across all utility territories.

Among all utilities, PGE shows the strongest emissions reductions. In 
this region, low-cost electricity often comes from renewables. As a 
result, both V1G and V2G reduce emissions more than in other terri
tories. V1G reduces CO2eq by about 250 kg per vehicle each year under 
both behaviors. V2G cuts emissions further, from 400 kg to nearly 2 
tonnes annually. In contrast, DLC, ConEd, and AE show smaller gains. In 
most cases, reductions stay under 100 kg, and emissions sometimes in
crease when cheap electricity comes from coal or gas. These results show 
that emissions benefits depend on local grid mix and whether low- 
carbon hours match off-peak prices. Faster chargers like 19 kW 
enhance these benefits by responding quickly to price signals, which 
often align with cleaner energy.

These results show that emissions depend on charging behavior, 
speed, and local grid mix. We need to add a carbon cost to the optimi
zation to avoid higher emissions in regions with a carbon intensive 
generation mix. Thus, we will be sure that the charging aligns with 
cleaner power and is financially optimal if we include a carbon or social 
cost based on fuel in our cost function. 

IV. Sensitivity of V2G savings to efficiency, battery cost, charger cost, 
and carbon pricing

The sensitivity analysis evaluates the average annual savings over 
the vehicle’s lifetime, which accounts for battery replacement when 
needed due to V2G operation, the cost of charger upgrades, and the 
applied discount rate. Based on earlier findings, the RT-Rate in PGE 
provides the highest monetary benefit among all utilities. Therefore, the 
sensitivity analysis focuses on this region under the RT-Rate pricing 
structure. The 19 kW charger provides the highest benefit among all 
charging speeds. Lower bidirectional charger efficiency or higher bat
tery costs reduce total savings, while higher carbon prices slightly lower 
the benefit of smart charging but improve V2G profitability, especially 
when drivers change their charging behavior. Median annual benefits 
remain positive under all tested conditions.

Fig. 10 shows the sensitivity analysis for PGE under the RT Rate 
pricing structure. This case is selected because the large gap between 
peak and off-peak prices creates strong energy arbitrage opportunities 
and higher savings for drivers. The first column presents the effect of 

Fig. 9. Annual CO2eq Emission Reductions from V1G and V2G Participation Across Different Charging Speeds and Behaviors. These boxplots show how much CO2eq 
each vehicle can save annually by using either V1G or V2G optimal charging under two scenarios of “plugging in when parked” and “no change in plugging 
behavior”. Three charging speeds (6.6 kW, 12 kW, 19 kW) are considered in the study of the impact of the charging speed on CO2eq reduction. The four utilities 
shown, PGE, DLC, ConEd, and AE operate in different electricity markets (CAISO, PJM, NYISO, and ERCOT, respectively), which leads to different environ
mental outcomes.
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charger efficiency. For the 6.6 kW charger, improving efficiency from 90 
to 96 % increases annual savings from about $890 to $1125 for smart 
charging, representing a 26 % increase. For the plugging when parked 
scenario for the same charger rate, the same efficiency gain raises annual 
savings from about $2266 to $2,693, equal to a 19 % increase. The 
improvement is stronger under 12 kW and 19 kW chargers, where ve
hicles stay connected longer and can make better use of low-cost 
charging hours.

This figure also shows how considering the SCC impacts annual 
savings. As the SCC increases from $0 to $280/tCO2, annual savings 
from smart charging decline across all charging speeds, which reflects 
the higher cost of electricity related emissions. For example, under 19 
kW smart charging, savings shows a 12 % reduction. In contrast, V2G 
scenarios show the opposite trend. Annual savings rise slightly with 
higher SCC. Vehicles that discharge energy to the grid help reduce 
emissions during carbon-intensive hours. As the SCC increases, this 
reduction becomes more valuable, which leads to higher savings for V2G 
scenarios. Under 19 kW charging, V2G savings rise by about 7 %, while 
smart charging savings drop by about 12 % as the SCC increases from 
0 to 280 $/t CO2. Higher carbon prices therefore make bidirectional 
charging more beneficial, while smart charging becomes slightly less 
attractive when emissions are priced.

Capital costs for battery replacement and chargers remain fixed 
under smart charging, since vehicles in this mode neither require bidi
rectional hardware nor experience additional battery cycling. Therefore, 
only V2G cases are sensitive to changes in these parameters. When the 
charger price decreases by 20 %, annual savings for V2G increase by 
about 4–11 %, depending on the charging speed and charging behavior. 
The effect is stronger for vehicles connected at both home and work, 
where higher utilization spreads fixed infrastructure costs more effec
tively. Similarly, when the battery price decreases by 20 %, annual 
savings rise by about 8–15 %, with larger gains under 19 kW that cycle 
the battery more frequently. Thus, V2G performance is more sensitive to 
battery cost than to charger cost, which highlights the importance of 
declining battery prices for improving the profitability of bidirectional 
charging.

4. Discussion and conclusion

This study looks at the optimal charging strategy from an individual 
driver’s perspective, which balances electricity costs and potential V2G 
revenue. This section adds infrastructure upgrade costs, discounting, 
and battery replacement over the vehicle’s lifetime, which ends when 
the battery requires replacement under normal charging. This allows us 

Fig. 10. Sensitivity of annual V2G and V1G savings to charger efficiency, carbon pricing, battery replacement cost, and charger price. Boxplots show the distribution 
of annual driver savings under different assumptions for (left to right) charger efficiency, social cost of carbon, battery replacement cost, and bidirectional charger 
price. Each column pair represents “no change in plugging behavior” (left) and “plugging when parked” (right). Rows correspond to deploying bidirectional chargers 
at home and work, only at home, and unidirectional smart charging. Colors indicate charging speed, which are 6.6 kW (red), 12 kW (blue), and 19 kW (yellow). Boxes 
represent the interquartile range, with whiskers extending to 5th to 95th percentiles.
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to estimate the actual cost-benefit of V2G for drivers.
Our results show that using all available parking sessions to charge 

can greatly improve financial returns (Fig. 7). After including infra
structure upgrades, discounting, and battery replacement costs, PGE 
shows the highest financial gains from V2G under both charging 
behavior scenarios (Fig. 11). Drivers who change their behavior and 
plug in while parked save more each year. Under the “no change” sce
nario, most drivers save between $1500 and $3000 per year. With active 
plugging, many reach between $3000 and $7000. ConEd has the second 
most profitable electricity rate structure. Without changing behavior, 
most drivers save between $500 and $1500. With active plugging, many 
over $1000. DLC and AE show smaller gains. In DLC, active plugging 
increases savings by about $200 per vehicle. In AE, some drivers gain 
slightly more with active behavior, but most stay below $1000. On 
average, benefits rise by $200 to $400, with a few outliers exceeding 
$1500.

In PGE, DLC, and AE, RT-Rates give the highest financial returns for 
V1G and V2G. Real-time price fluctuations in these regions create strong 
arbitrage opportunities that cover battery and infrastructure costs. 
ConEd is the exception. Most vehicles select the EV-Rate, which offers a 
wide price gap up to 31 ¢/kWh between peak (33 ¢/kWh) and off-peak 
(2 ¢/kWh), and a long peak period from 8 a.m. to midnight. These 

features make the EV-Rate more valuable than the RT-Rate for vehicles 
with limited flexibility. Charging speed also affects profitability. The 12 
kW charger gives the best tradeoff between cost, energy flexibility, and 
battery degradation. It delivers the highest net benefit across most re
gions. In flat-rate regions like DLC and AE, 6.6 kW chargers often appear 
optimal because their lower cost offsets limited arbitrage. These results 
show that faster charging is not always the best option. The 19 kW op
tion is not included in this comparison because bidirectional chargers at 
this power level are not yet available in the mass market. Vehicles can 
charge at 19 kW but cannot discharge at the same rate. The analysis 
focuses on 6.6 kW and 12 kW chargers, which represent the practical 
range of bidirectional charging options available today.

PGE and ConEd show strong V2G adoption, with more than 80 % of 
vehicles selecting V2G strategies. In contrast, V1G is more common in 
DLC and AE (80 %), where price gaps are smaller and parking windows 
are shorter. These differences highlight how pricing structure and 
behavior shape the value of bidirectional charging. Across all regions, 
12 kW chargers appear most frequently as optimal, offering the best 
balance of cost, battery health, and energy flexibility.

These findings show that maximizing potential charging sessions can 
improve both financial savings and emissions outcomes by increasing 
flexibility in when to charge or discharge. Medium-speed chargers, like 

Fig. 11. Optimal individual charging strategies across four U.S. utility territories. Each scatter plot shows the relationship between annual driving distance (x-axis) 
and yearly savings compared to the baseline scenario (y-axis), under two charging behaviors of “no change in plugging” and “plugging when parked.” The four rows 
represent utility regions: PGE, DLC, ConEd, and AE. Marker shape indicates the optimal charging type and rate plan (V1G or V2G under EV or RT-Rates). Marker color 
reflects charging speed (6.6 kW, 12 kW), and marker size corresponds to battery capacity.
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12 kW, offer strong lifetime savings when aligned with off-peak hours 
and low-carbon hours and partly offset battery degradation costs. The 
concept of virtual miles is important for warranty design, since V2G 
operations accelerate battery degradation without adding physical dis
tance. Current regulations from agencies like the EPA and CARB base 
battery warranties on time and physical mileage but do not account for 
the extra cycles from V2G, which can add an additional annual mileage 
equivalent. Revising these regulations to include virtual miles would 
protect both manufacturers and consumers from unexpected battery 
replacement expenses.

The analysis also shows that rate structure plays a major role in 
shaping VGI value. Real-time pricing creates greater opportunities not 
only for total savings but also for operational flexibility. Even in regions 
with small TOU or EV-Rate gaps, RT-Rate pricing still provides strong 
incentives when combined with optimal managed-charging strategies. 
These rate effects are directly connected to emission outcomes, since 
aligning charging with low-carbon hours can reduce CO2 compared to 
uncontrolled charging.

Although this paper focuses on driver benefits, coordinated partici
pation also brings value to the power system. V2G participation can help 
utilities avoid costly grid upgrades by reducing peak demand that occurs 
only a few times each year. Coordinated charging and discharging 
improve grid stability by balancing short-term fluctuations in demand 
and supply. They help absorb excess renewable generation that would 
otherwise be curtailed when vehicles charge during low-demand or 
high-renewable hours. Policymakers can support this through targeted 
incentives for bidirectional chargers and by ensuring that drivers share 
in the value they create for the grid.

These operational findings connect directly to policy and tariff 
design. Dynamic real time pricing should include clear limits that pro
tect customers from high bills, with export compensation linked to local 
wholesale prices and peak periods aligned with renewable generation 
hours. Programs should include managed-charging defaults with easy 
opt-out options and simple automation through vehicle or charger apps. 
Utilities can support installation of bidirectional-ready Level-2 chargers 
that provide a strong cost performance balance and should simplify 
interconnection and metering so exported energy is credited fairly. 
Daytime charging and V2G pilots at workplaces can increase flexibility 
without requiring additional home chargers. Tariffs should avoid high 
fixed or demand charges that reduce the value of smart charging and 
instead use small performance-based fees that reward grid support.

The optimization model in this study assumes perfect foresight of 
electricity prices and vehicle travel schedules. This setup represents the 
upper limit of potential savings under ideal coordination. In practice, 
both drivers and aggregators face uncertainty in price signals and trip 
timing. This uncertainty reduces the ability to fully capture price dif
ferences and motivates the use of rolling-horizon or stochastic control 
instead of perfect-information scheduling. The results of this study 
should therefore be interpreted as an upper benchmark, while the 
consistent savings across different tariffs suggest that the main conclu
sions remain valid under realistic uncertainty.

Also, battery degradation is modeled linearly in this study to main
tain transparency and computational simplicity. Future work should 
apply non-linear, C-rate-sensitive models to better capture temperature 
and cycling effects.

Another challenge is access to representative, high-resolution data 
on EV driver behavior. Although our sample does not represent the 
entire U.S. EV fleet, it captures a wide range of driving patterns in 
California. As EV adoption grows, this work helps clarify how V2G could 
perform in regions with different electricity rates and grid conditions. 
Future research should expand this analysis to include more utilities, 
emerging retail markets, and datasets reflecting post-2020 driving 
behavior. The dataset used in this study includes 50 volunteer BEVs 
monitored for about one year each between 2015 and 2020. This sample 
is not statistically representative by geography, climate, or household 
type. The results may differ in other regions such as ConEd, DLC, and AE 

due to differences in driving patterns and grid conditions. Broader 
datasets are needed to capture regional and behavioral diversity, and 
future studies should include climate-related battery effects to improve 
external validity.

Although optimized VGI provides clear financial and environmental 
benefits, several real-world barriers still limit large-scale adoption. 
Bidirectional chargers remain costly and not yet standardized across 
automakers, which creates warranty and compatibility issues. Driver 
participation depends on convenience, charger access, and trust in 
aggregators. Current utility regulations in many states restrict vehicle 
energy export or lack clear credit mechanisms for small distributed- 
energy resources. The Net Energy Metering (NEM) framework in Cali
fornia currently limits compensation for exported electricity by using an 
avoided-cost calculation rather than full retail credit. This structure 
reduces the value of exported energy from distributed resources such as 
EVs and may discourage participation in V2G programs until vehicle- 
specific export tariffs are introduced. Market signals such as real-time 
pricing and aggregator access to wholesale markets are also limited in 
many areas. Policymakers and utilities must coordinate standards and 
incentives to overcome these barriers and ensure that both drivers and 
grid operators benefit from VGI programs.

This study includes four utility territories such as PGE, ConEd, DLC, 
and AE, that represent diverse electricity rates, pricing structures, and 
grid conditions across the United States. This regional diversity allows us 
to test how V2G performance varies under different market settings. In 
high price, renewable-aligned areas such as PGE, V2G offers large 
financial and environmental gains. In contrast, regions with flatter rates 
or higher-emission generation, such as DLC, show smaller or more mixed 
outcomes. These comparisons indicate that VGI strategies should be 
adapted to local grid and pricing conditions.

We assume a full pass-through of cost savings from aggregator to EV 
owner. While this reflects a theoretical best-case for consumer benefit, in 
practice, third party aggregators may retain a share of the value 
depending on market structure, risk allocation, and contract design. The 
analysis also does not quantify the option value of faster home charging, 
for example, the ability to depart with a higher state of charge during 
unexpected trips, which may slightly bias results toward slower 
charging speeds.
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