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Transportation network companies (TNCs) are a relatively new 
transportation service provider and include rapidly growing 
companies, such as Uber and Lyft. Generally, the business 

model of these companies is to leverage existing vehicle owners to 
provide rides through a peer-to-peer ‘sharing economy’. The driv-
ers for TNCs earn money by providing rides for users who pay for 
the service, a portion of which goes to the parent companies. The 
growth of these companies has been tremendous: Uber and Lyft 
have provided a combined 5.5 billion rides with over 50 million 
users of the services, a remarkable growth, especially considering 
the services have been around for less than a decade. As these ser-
vices continue to expand, there are several unique opportunities for 
disruptive changes in the transportation sector. This study focused 
specifically on ride-hailing from Uber and Lyft, which is an auto-
motive transportation unlicensed taxi service (and, in this context, 
primarily app based). We adopt the term ride-hailing instead of 
ride-sharing, which can be misleading as single-fare rides are not 
necessarily shared.

One transition that TNCs may help enable is a cleaner vehicle 
fleet through the electrification of vehicles that operate in their ser-
vice. The benefits of the emissions reduction from plug-in electric 
vehicles (PEVs) in TNCs is larger because vehicles driven for these 
services are driven substantially more than the average vehicle. 
Additionally, electric vehicles can be particularly compelling for 
drivers of TNCs due to the lower use-phase costs of the vehicles1, 
but may face other difficulties in the form of higher upfront costs 
to purchase and possible range imitations. However, there are also 
alternatives to the traditional driver-owned service model, which 
include programmes that allow participants in ride-hailing ser-
vice economies to use a fleet or car-share vehicle rather than their 
own (this is common if the driver cannot afford their own vehicle). 
For example, in January 2016, General Motors announced a new 
programme called Maven after their acquisition of Sidecar, a TNC 
founded in 2011. Maven is a car-sharing company that allows its 
users to rent vehicles within their fleets.

The benefits of electrifying new mobility services are discussed 
in the literature in terms of theory, but there are no examples of 
empirical work that examines the real-world impacts. As early 
as 2011, Kley et al. identified electric vehicles in the context of 

products that could be leveraged in different types of mobility 
services, such as car-sharing (membership-based service that pro-
vides qualified drivers access to a network of shared short-term 
rental vehicles), despite the relative dearth of these services at 
the time2. The authors identified critical issues of charging infra-
structure and electric drive-train technological restrictions on 
the value proposition, value chain configuration and revenue 
model of the new technology vehicles within the new service 
ecosystem2. This study laid the groundwork for important con-
siderations of two rapidly growing fields and difficulties in inte-
grating the two together in a successful business operation. In 
2012, the Polytechnic University of Milan launched Green Move, 
an electric-vehicle-sharing system, the details and design of which 
were documented in a peer-reviewed article3. The ambitious proj-
ect featured a peer-to-peer approach using an integrated device 
that bridged the user, vehicle and a control centre with keyless 
mobility (using smartphones). Unfortunately, the project was not 
a commercial service and limited in size to only four electric vehi-
cles. It ended in 2013, but was one of the earliest conceptions of 
electric vehicles in use within new mobility services.

As both car-sharing and ride-hailing services increase in popu-
larity and size, there is also a corresponding increase in research 
on the topic. However, regarding the electrification of vehicles in 
TNCs, the vast majority of studies focused on car-share services 
rather than ride-hailing. A large number of studies focus on opti-
mizing the operational aspects of various car-sharing services4–8. 
Other studies provide insight into specific case studies of how elec-
tric vehicles are being used in programmes and the lessons learned 
in regions such as Chicago9, and how they are being adopted by 
users in Germany10. An analogous concept of electrification has 
been studied in taxi fleets. The literature includes detailed consid-
erations of operation and charging behaviour11–14. However, two 
studies examined environmental and emissions benefits, such as an 
estimated 48% reduction in exhaust emissions by integrating elec-
tric taxis into the Nanjing fleet15 and a tenfold reduction of emis-
sions in Brazil16. These studies provide valuable points of reference 
to compare the emissions benefits derived from this work, although 
there are several distinct differences between taxis and ride-hailing 
vehicles, which includes deadheading (movement of service  
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vehicles in non-revenue mode) when picking up travellers, sharing 
rides and fleet ownership and/or operation differences).

The discussion of electric vehicles in a ride-hailing context is 
rare, but the body of literature on the topic is growing17–24. These 
studies have begun to provide important insights on impacts of 
ride-hailing services. For example, Clewlow and Mishra found 
that the services led to a decrease in public transit usage, but did 
not substantially alter vehicle ownership rates17. Jenn et al. showed 
that use of TNCs correlates with a greater acceptance of electric 
vehicles18, and similarly Cassetta et al. demonstrated an upward 
trajectory in both new mobility services (both ride-hailing and 
car-sharing modes) simultaneously with electric mobility19. 
Other studies showed that electric vehicles can be a favour-
able mode in ride-hailing services due to their relative cleanli-
ness20,21, lower total cost of use22 and ability to link technology and 
demand-management strategies through shared use23; however, 
regulation would be required to ensure the sustainability of the 
transportation system24.

It is clear from the existing literature that there is a gap in empiri-
cal evidence that measures the impact of combining shared mobility 
services, particularly ride-hailing services, with vehicle electrifica-
tion. The work presented in this study provides a real-world insight 
into the implications of electric vehicle use in services such as Uber 
and Lyft. These insights include an overview of the travel intensity 
and energy demand from PEVs being used in these services within 
California. We also measured the comparative emissions savings 
from electric vehicle use as well as the associated charging infra-
structure implications from a higher-intensity usage.

In this study, we examined empirical data on the use of electric 
vehicles associated with TNC services in Uber and Lyft fleets (which 
constituted over 98% of ride-hailing trips at the end of 201925), 
employing data from several electric-vehicle-charging network pro-
viders and TNCs. Our work provides insight into the use of electric 
vehicles in ride-hailing services and quantifies the associated emis-
sions benefits. However, the higher travel intensity also requires 

much more charging, the implications of which we also attempted 
to identify in this study.

Characterizing the use of electric vehicles in tNCs
Our analysis of PEVs first compared the travel behaviour between 
conventional gasoline and electric vehicles in California with that 
of electric vehicles employed in TNC services. Figure 1 displays the 
distribution of daily miles travelled for several groups of vehicles 
in California. For the average driver (non-TNC), gasoline vehicles 
tend to be driven slightly more than their electric vehicle coun-
terparts. For a comparison against conventional gasoline vehicles, 
we employed the California Household Travel Survey (CHTS) 
(which provides 118,668 trips) and for ordinary electric vehicles 
we employed the multiyear panel survey Plug-in Hybrid & Electric 
Vehicle (PH&EV) with 15,275 respondents to derive a generalized 
profile of electric vehicle travel patterns (see Methods for additional 
details of the surveys). Although the difference between internal 
combustion engine vehicles (ICVs) and plug-in hybrid electric 
vehicles (PHEVs) is relatively small, both outpace short-range and 
long-range battery electric vehicles (BEVs). However, we found that 
PEV TNC travel behaviour was substantially higher than that of 
typical vehicles in California by at least a factor of two. We observed 
a drastically different distribution of mileage travelled by everyday 
vehicles (whether gasoline or electric) and that within the TNC fleet.

There are two TNC distributions in Fig. 1. The TNC (single ser-
vice) distribution is derived from over 400,000 trips provided by 
BEVs for one TNC service. It is highly likely that this distribution 
underrepresents the total daily miles travelled because most vehicles 
drive for more than one TNC service. The TNC (full-time) distribu-
tion can alternatively be considered an upper bound of TNC travel: 
the distribution is constructed from a set of over 1,000 vehicles that 
are known to be driving full-time (as their primary occupation) and 
contain the comprehensive travel for both Uber and Lyft services.

One of the primary concerns of BEV use in TNC services is that 
the limited range of the electric vehicle will prevent the vehicles 
from being used in the same manner as gasoline vehicles. In addi-
tion, travelling to charging stations and the length of time required 
to charge BEVs being used for ride-hailing may also detract from 
drivers’ ability to provide the same length of service as a gasoline 
vehicle. Surprisingly, we found that electric vehicles actually pro-
vided the same level of service in terms of number of rides and dis-
tances of trips every day. The distributions of daily distances in Fig. 2  
were compared using a Kolmogorov–Smirnoff test and revealed to 
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Fig. 1 | A comparison of average daily travel behaviour in California. 
Gasoline vehicles (California Household Transportation Survey), plug-in 
hybrids, short and long-range BEVs (UC Davis PH&EV Center survey) 
compared with TNC electric vehicles. The TNC (single service) data are 
compiled from a set of over 400,000 BEV trips from a single TNC, so this 
distribution is probably an underestimate of the daily distance because the 
BEVs probably drive for more than one service. TNC (full time) consists of a 
subset of over 1,000 BEVs that are known to be full-time drivers and contain 
trips for both Uber and Lyft services. Sample size for each group: TNC 
(full-time), 118,668; ICV, 11,585; PHEV, 4,798; 100-mile BEV (BEV100), 
4,026; BEV200+, 1,953; TNC (single service), 427,624).
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Fig. 2 | Comparison of daily distribution of travel behaviour. Values 
by Lyft ICVs (n = 928 vehicles and 395,212 trips), PHEVs (n = 1,664 
vehicles and 600,193 trips), and BEVs (n = 1,736 vehicles and 427,624 
trips). A Kolmogorov–Smirnov test provides statistical evidence that the 
distributions are the same. ICV to PHEV, D = 0.0264, P <0.0001; ICV to 
BEV: D = 0.0431, P <0.0001).
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be statistically identical. Although we are confident in the similar-
ity of service by amount, we do not rule out possible differences in 
where the services were provided. We found that the majority of 
trips (over 90%) occurred within five miles of where the charging of 
TNC vehicles occurs.

The growth and utilization of electric vehicles in TNC services 
has been explosive, especially as the introduction of the Maven 
programme in early 2017 (whose entire electric vehicle platform 
consisted of Chevrolet Bolts). We were able to track approximately 
105,000 unique vehicles charging at non-Tesla d.c. fast-charging 
stations (representing a little less than half the total number of full 
electric vehicles in California) and just over 1,000 unique TNC 
electric vehicles from 2014 to the end of May 2018. Although these 
TNC vehicles represent less than 0.5% of the electric vehicles in 
California, the charging demand from this service was 35% of the 
total energy demand at non-Tesla d.c. fast-charging stations for the 
remaining electric vehicles (Fig. 3).

From the beginning of 2017, the charging demand grew by 
approximately tenfold in size over a span of nine months followed 
by another fivefold growth over the next six months. The continu-
ous rapid growth speaks to a critical challenge for both the TNC ser-
vices and charging service providers to enable electrification. Also, 
note that the location of the chargers corresponds relatively closely 
with the dense urban areas with a high demand for ride-hailing 
services, but not all the stations are necessarily being employed to 
charge TNC service vehicles. Careful consideration should be made 
for the location-based demand of ride-hailing services and to find 
corresponding charging locations to minimize deadheading related 
to charging the vehicles.

In Fig. 4, we display the amount of energy charging requirements 
for TNC vehicles compared with that of regular electric vehicles in 
California. We observe a very different distribution of charging pat-
terns between the two types of vehicles. The charging demand from 
TNC vehicles was relatively uniform from 0 to 40 kWh. Although 
the average charging event for these vehicles was around 20 kWh 
(approximately 60–70 miles in range), these vehicles visited charg-
ing stations on average 2.5 times a day, whereas other unique elec-
tric vehicles visited d.c. fast-charging stations on average once every 
2 weeks. This means that, despite the range ‘limitation’ of electric 

vehicles, we observe that these TNC service vehicles regularly travel 
to and exceed this mileage on a daily basis. This stands in compari-
son with ordinary electric vehicles that charge, on average, 11 kWh 
during a fast-charging session. There is a unique spike in the ordi-
nary vehicle distributions that is the result of certain restrictions on 
the length of charging to 30 minutes.

The charging patterns of TNC vehicles are also noticeably differ-
ent to the d.c. fast-charging patterns of other electric vehicles (Fig. 5).  
As the d.c. fast chargers are all public infrastructures (as opposed 
to being available at home locations), we observe negligible charg-
ing events for regular PEVs that occur between the hours of around 
3.00 and 8.00. However, for the TNC PEVs, we still observe a rela-
tively high proportion of charging events that happened over this 
same time period. TNC vehicles also have a dip in charging between 
the hours of 18:00 and 20:00, probably due to an increased demand 
for ride-hailing services in that period, whereas this time period is 
actually the highest peak for observed charging behaviour among 
regular PEVs. Interestingly enough, there is a slight difference in 
the distributions of charging times by region. San Diego has two 
peaks during the early morning hours for TNC vehicles (at 5:00 and 
8:00), which are not observed in the other regions. Additionally,  
for ordinary electric vehicles in San Diego there is a continued 
upwards trend in charging that starts from 7:00 and finishes at 
15:00, with a noticeable flattening in both Los Angeles and San 
Francisco after 10:00. On closer inspection, we found that some of 
these abnormalities are due to a relatively small volume of vehicles 
with a distinct impact on the load shape. Although the number of 
events is still high (in the thousands), the charging pattern observed 
in San Diego can be attributed to a handful of vehicles. In the latter 
months, once more vehicles are observed in the charging dataset, 
the load shape pattern is much closer to those of Los Angeles and 
San Francisco.

The overview from the charging event data provides a num-
ber of interesting insights into the differences between electric 
vehicles that provide services for ride-hailing programmes (such 
as the Chevrolet Bolts) and regular electric vehicles. The travel 
intensity of TNC PEVs is striking and points to a need for a larger 
charging infrastructure to help manage the energy demand from 
these vehicles.
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Fig. 3 | Weekly charging demand of electric vehicles driving for tNCs from 
August 2016 to October 2018 in San Diego, Los Angeles and San Francisco. 
The combined group is an underestimate of total charging as PHEV charging 
demand is not included, nor does this ride-hailing services are included. The 
d.c. fast (known) group represents known full-time drivers of the service. By 
October 2018, the charging demand for d.c. fast represents nearly 35% of 
non-Tesla fast-charging demand. Represented are 1,240 charging locations 
of the 1,413 non-Tesla d.c. fast-charging locations in California over several 
charging network providers (predominantly EVGo and Chargepoint). There 
is currently no explanation for the dips in demand observed in the data.
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Fig. 4 | the amount of energy used per charging event at d.c. fast 
chargers for a subset of known full-time tNC drivers compared with that 
of all other electric vehicles in California. Full-time TNC vehicles (left) 
have a significantly higher charge requirement with a relatively uniform 
distribution that tails off near 40 kWh (average of 22 kWh), whereas 
ordinary electric vehicles (right) have a truncated normal distribution 
centred around 11 kWh. Note that the large peak for other vehicles is a 
result of specific membership policies with certain service providers that 
restrict users to 30 min of charging. Sample sizes: full-time TNC (left), 
118,668; other electric vehicles (right), 1,971,055).
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Emissions implications of PEVs driving for Uber and Lyft
We can calculate the associated emissions for each charging event 
based on the amount of energy demand and the time of the event. 
The upstream emissions that result from plugging in an electric  
vehicle depend on the time of charging because different power 
plants respond to increase in charging demand at different 
times of the day. We calculated the average hourly emissions in 
California from the California Independent System Operator (ISO) 
Greenhouse Gas Emission Tracking Reports (see Methods for emis-
sions calculations), which allows us to understand how clean or 
dirty the electric grid is at different times of the day. Owing to the 
high availability of solar power, the emissions during the day are 
lower than the night-time emissions, although California as a whole 
has a relatively cleaner grid compared to that of the remainder of 
the United States.

In Fig. 6, we provide a complete display of the emissions associ-
ated with every charging event for TNC PEVs from January 2017 
to May 2018. The vertical variation is a result of differences in grid 
emissions at different times of the day. Thee two distinct bands for 
the points are a result of the relatively different emission rates of the 
electric grid at daytime and night-time. The horizontal variation is 
a result of longer travel distances from the electric vehicles that lead 
to a larger energy demand.

How much emission has been saved by the use of PEVs in 
ride-hailing services? If we assume that the PEVs were all relatively 
fuel-efficient gasoline vehicles (29.4 MPG, the average efficiency of 
the Lyft conventional gasoline fleet), we can calculate the difference 
in emissions across all miles travelled as captured by the charging 
infrastructure (left panel, Fig. 7). The daily emission savings aver-
ages at 38.7 kg of CO2 to electrify the ride-hailing service. Across all 
1,000 BEVs from the beginning of 2017 to May 2018, this resulted 
in a total savings of 1,142 tons of CO2, the equivalent of remov-
ing approximately 260 gasoline vehicles off the road (note that this 
is true unless the electric vehicles themselves change the demand 
for ride-hailing services). When we compare these savings against 

replacing average gasoline vehicles (not in ride-hailing services) 
with electric vehicles, the emissions reductions are nearly three 
times lower (right panel, Fig. 7). Our analysis does not include 
upstream emissions from fuels production, which introduce sub-
stantially more uncertainty. However, including these results would 
probably lead to a larger difference in emissions savings as the rela-
tive emissions increase with life-cycle analysis for gasoline are larger 
than the electricity grid in California.

Discussion and policy implications
Electric vehicle use in new mobility ride-hailing services has 
grown rapidly over the past 18 months and there is still tremen-
dous potential for further expansion. In November 2016, elec-
tric vehicles provided about 16,000 rides and by February 2018 
the number of rides had increased fivefold to over 85,000 rides. 
Nevertheless, the approximately 5,000 vehicles that provide ser-
vices on Uber and Lyft platforms constitute less than 1% of the 
700,000 electric vehicles in California at the beginning of 2018. 
Understanding the ramifications of this new vehicle technol-
ogy coupled with new mobility options, such as Lyft and Uber, 
is critical to ensuring these two revolutions in transportation 
can maximize social welfare. These benefits come in the form of 
electrification, which reduces transportation emissions, and the 
potential of TNCs to provide shared mobility, which reduces con-
gestion and the costs of travel. In this study, we observe both large 
benefits in the form of emissions reductions and challenges that 
must be overcome for charging infrastructure development and 
use. These infrastructure issues are apparent in the rapid growth 
of charging demand of TNC electric vehicles (Fig. 3), the relative 
difference in charging demand per vehicle (Fig. 4) and the differ-
ence in the timing of charging (Fig. 5).

The emissions benefits are immediately apparent: due to the higher 
travel intensity of vehicles that participate in ride-hailing programmes, 
using electric vehicles extends the per-mile benefits of this technology 
over a greater number of miles. One of the concerns for electric vehi-
cles in these services is their ability to provide comparable services due 
to potential issues with electric range. Although we did not perform 
a direct comparison with ride-hailing service vehicle travel, we did 
observe that the PEVs in the TNC service are able to drive upwards 
of 190 miles a day on average (compared with 20–30 miles a day  
for a typical driver) and can top 300 miles a day in several instances. 
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Fig. 5 | Histograms of the time of day that charging begins at d.c. fast 
chargers for tNC vehicles (left) and for other electric vehicles (right) in 
Los Angeles, San Diego and San Francisco. In comparison with regular 
electric vehicles, there is a substantially higher frequency of charging 
events that begins between 0:00 and 8:00. Additionally, there is a dip 
in charging for TNC drivers at around 18:00–20:00, probably due to the 
higher demand for ride-hailing services at that time, whereas for regular 
PEVs this period is the highest for charging events. Sample sizes: TNC Los 
Angeles, 40,834; TNC San Diego, 23,482; TNC San Francisco, 54,352; 
other electric vehicles Los Angeles, 708,107; other electric vehicles San 
Diego, 178,329; other electric vehicles San Francisco, 1,084,619).
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Fig. 6 | the emissions associated with every observable tNC charging 
event from January 2017 to May 2018. The emissions are a function of 
the average hourly marginal emissions in California at the time associated 
with the charging event as well as of the total charging amount. The two 
relatively distinct bands result from the bimodal daytime and night-time 
emissions factors in California (n = 118,668).

NAtUrE ENErgy | www.nature.com/natureenergy

http://www.nature.com/natureenergy


ArticlesNaTUre eNergy

The travel often exceeds the range of the battery and at least demon-
strates with a battery in the range of 200+ miles (BEV200+) a techni-
cal capability with the availability of d.c. fast chargers (although not 
necessarily an economic feasibility). From a purely emissions stand-
point, we found that even in the most pessimistic scenario, replacing 
a full-time ride-hailing service vehicle with a BEV yields an emis-
sions reduction three times higher than replacing an average gasoline 
vehicle in California. If policy to promote the adoption of electric 
vehicles begins to move away from a number-of-vehicles focus to a 
more electric-miles focus, strong consideration should be placed on 
the large potential in electrifying the growing ride-hailing services.

It is simultaneously necessary to consider other impacts of elec-
trification. A high travel intensity leads to larger emissions benefits, 
but also means a greater requirement for the charging and associated 
infrastructure. Our analysis indicates that regular PEV users tend to 
have a lower average utilization of chargers during the hours of the 
day with a greater TNC utilization. However, one of the key draw-
backs of the analysis is that many of the observed charging events are 
often based on behaviour that stems from free charging opportunities 
provided by specific network providers. From an economic feasibil-
ity perspective, it is unclear whether this programme is sustainable. 
The potential success of adopting electric vehicles requires a balance 
between the higher upfront cost of the vehicle and the marginal cost 
with use, which is free in this case study, but has the potential to be 
more expensive than gasoline—particularly with d.c. fast charging.

Our work is an empirical study of electric vehicles being used in 
ride-hailing services and we hope to highlight the need for future 
research topics in this area. Other considerations for future stud-
ies include a direct comparison of gasoline and electric vehicles in 
ride-hailing services (for example, utilization, spatial coverage, costs 
and so on), travel demand patterns to determine the optimal siting 
of chargers, projections of growth in electrification within this sec-
tor and the necessary charging infrastructure requirements, plans 
for viable adoption and usage strategies and policy support mecha-
nisms to ensure beneficial outcomes, to name a few.

Methods
Survey data. Our work employs data from two surveys: the CHTS and the PH&EV 
panel survey.

The CHTS was administered by the California Department of Transportation 
from 2010 to 201226. The survey collected travel behaviour information from 

over 42,500 households and 109,113 total participants using a variety of methods 
(telephone interviews, online and mail surveys, wearable and in-vehicle global 
positioning system devices and on-board vehicle sensors. The CHTS was used to 
display the daily travel behaviour of conventional gasoline vehicles in Fig. 1 and to 
obtain the average fuel efficiency of conventional gasoline vehicles in equations (1) 
and (2) necessary for Fig. 7.

The PH&EV Center, part of the Institute of Transportation Studies at the 
University of California, Davis, conducted a cohort survey of electric vehicle 
purchasers in California every year from 2015 to 201827. The respondents of 
the survey were selected from the California Clean Vehicle Rebate Project, a 
rebate program for purchasers and leasers of electric vehicles within California. 
The California Clean Vehicle Rebate Project is administered by the Center for 
Sustainable Energy, which has an agreement with the University of California, 
Davis, to provide contacts (e-mail) for solicitation to disseminate and gather 
respondents for the survey. Altogether, the survey includes 15,275 respondents,  
all of whom have applied for the California Clean Vehicle Rebate Project rebate 
after the purchase or lease of a PEV.

The survey itself supports many projects that investigate a broad array of 
topics at the PH&EV Center, which range from (but are not limited to) consumer 
purchase behaviour and attitudes, driving behaviour and charging behaviour28,29. 
For the purposes of this project, we employed the survey to display the daily travel 
behaviour of PHEV and BEV drivers shown in Fig. 1.

Charging data. We employ charging data from a combination of charging 
network provider data and a small subset of vehicles logged with on-board 
diagnostic devices. The data contain a comprehensive set of charging events from 
EVGo (~3.8 million events) and Chargepoint (~9.2 million events) that span 2014 
to 2018 in California. Each charge event provides information on the location, 
individual plug identification (as locations may have multiple plugs), start and end 
time of the charging event, energy dispensed and a subset of identifiers for TNC 
charging events

Ride-hailing data. Ride-hailing data were provided by TNCs such as Uber and 
Lyft. Data from Lyft contain a comprehensive set of 1.4 million trips in San 
Francisco, Los Angeles and San Diego. The data span 2017 to 2018 for every 
electric vehicle and for a random sample of 5,000 conventional gasoline vehicles 
(all specified by vehicle make and model). Each trip record contains information 
on time and census tract of pickup as well as the distance of the ride.

Emissions calculations. We calculated the emissions associated with each of 
the charging events from the charging data, which enabled us to understand the 
contribution of electrifying ride-hailing services to reducing emissions. The total 
emissions, E, were calculated as follows:

E ¼
X

i

X

t

XGt
it ð1Þ

where i is an index for each individual observation, t represents an hourly time 
index and each i has a corresponding element in t. The G parameter values 
represent the grid emissions at each hour of the day and are derived from the 
California ISO using historical hourly load data and corresponding hourly 
emissions data from 2014 to 2018. This provides the average hourly emissions for 
the grid across the full span of charging and TNC trip data. The emissions rates 
range between 270 and 350 gCO2 kWh–1 during night-time hours and drop to 150–
200 gCO2 kWh–1 during daytime hours. Χ represents the kWh demand from the 
new mobility vehicles in each time period and was obtained directly from the data.

We also estimated the counterfactual emission savings from electrifying the 
ride-hailing vehicles by comparing with a scenario in which all these vehicles  
were gasoline. As drivers can actually use gasoline vehicles in the TNC service,  
it is not unreasonable to assume that the service they would have provided and the 
travel intensity of those vehicles would not be drastically different from the electric 
vehicles now being used in TNCs. In fact, we observe in our data that the service 
provisions between electric vehicles and gasoline vehicles in TNCs are identical in 
terms of miles travelled and number of trips provided in a given day. However, it is 
important to note that some of the travel behaviour would probably differ because 
gasoline vehicles would not have to travel to charge their vehicles (although they 
would need to drive to gasoline stations), this is not something we observe in our 
data. The emission savings from these vehicles can be calculated by taking the 
difference between the emissions calculated in equation (1) with the corresponding 
gasoline vehicle emissions, together represented as:

S ¼
X

i

X

t

δ

βBEVβgas
� Gt

 !
ð2Þ

The electric vehicles in our analysis are assumed to have an efficiency, βBEV, 
of 28 kWh per 100 miles. The substitute ride-hailing gasoline vehicle data were 
calculated based on the distance-weighted fuel efficiency, βgas, of a representative 
sample of TNC gasoline vehicles at 29.4 MPG (ride-hailing vehicles are generally 
more fuel efficient than the average vehicle).
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s.d., 22.4 kg
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Fig. 7 | Histogram of the comparative emission savings. The left histogram 
is for switching a ride-hailing vehicle from a gasoline vehicle (29.4 MPG 
average in ride-hailing fleet from Lyft data) to an electric vehicle (28 kWh 
per 100 mile average in the ride-hailing fleet). The right histogram is for 
switching an average gasoline vehicle in California (27 MPG average from 
CHTS data) to a comparable electric vehicle in the TNC fleet. We found the 
emissions savings to be nearly three times higher for electrifying ride-hail 
versus electrifying the average California driver.
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We also considered a comparison of TNC emissions savings to the savings 
from switching an ordinary gasoline vehicle (not involved in ride-hailing services) 
to understand the relative emission savings for a targeted PEV adoption policy. The 
process used to calculate the emissions is:

E0
gas ¼

X

j

νjδ

βgas
ð3Þ

E0
BEV ¼

X

j

vjβBEVG ð4Þ

S0 ¼
X

j

Ejgas � EjBEV
� 

ð5Þ

The set j describes the index for individual observations of travel behaviour 
from a separate dataset, the CHTS. The vehicle miles travelled associated with 
these vehicles is provided from the CHTS as parameter ν. We focused primarily 
on estimating the emissions savings as a bounding exercise, particularly related 
to the emission savings from the TNC electrification, and therefore estimated an 
optimistic scenario for the emission savings from switching a regular (non-ride 
hailing service) vehicle to an electric vehicle (S0). Therefore, the βGas parameter 
was assumed to be 27 MPG (approximately the average in California) and the G 
parameter was assumed to be 186 gCO2 kWh–1, the lowest average emissions rate. 
The emissions conversion from gasoline to CO2 is represented as δ and its value is 
based on EPA measurements of 8,887 gCO2 mile–1.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available from EVGo, 
Chargepoint, Uber and Lyft, but restrictions apply to the availability of these 
data, which were used under license for the current study and so are not publicly 
available. The data from the CHTS are available from the Transportation 
Secure Data Center, National Renewable Energy Laboratory, at www.nrel.gov/
tsdc. California grid load and emissions data are available from the California 
ISO Historical EMS Hourly Load Data (http://caiso.com/planning/pages/
reliabilityrequirements/default.aspx#Historical) and Today’s Outlook (http://
www.caiso.com/TodaysOutlook/Pages/emissions.aspx). Source data are provided 
with this paper.

Code availability
The code can be obtained by contacting the author directly at ajenn@ucdavis.edu.
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