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Evaluating the emission benefits of shared autonomous electric vehicle 
fleets: A case study in California 
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H I G H L I G H T S  

• We evaluate the emissions from SAEVs with a grid operation model. 
• SAEV charging demand is simulated using real-world data from TNCs. 
• In the Californian grid, SAEVs are more than 5 times less CO2 intensive than ICVs. 
• Emission benefits of SAEVs increase with the expansion of renewable generation. 
• Synergizing SAEV charging with grid operation yields substantial emission benefits.  
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A B S T R A C T   

The transportation sector is a major source of greenhouse gas (GHG) emissions. Shared autonomous electric 
vehicles (SAEVs) have the potential to mitigate emissions, but the effect can be highly dependent on the growth 
and operation of the SAEV fleet as well as its interaction with the evolving power system. In this study, we 
simulate travel and charging behaviors of SAEVs based on empirical data of ride-hail service operations, and 
integrate SAEV charging with the Grid Optimized Operation Dispatch (GOOD) model, taking into account the 
expansion of renewable generation and charger capacity over time. Emissions from SAEVs are compared across 
different market adoption levels, occupancy rates, and charging strategies. We find that under the Californian 
power grid, SAEVs are generally more than 5 times less carbon intensive than modern day ICVs on a per mile 
basis. The extent of aligning charging schedule with renewable generation is an essential determinant of the 
economic and emission impact from an SAEV fleet. At higher levels of renewable penetration, synergizing SAEV 
charging with grid operation can be the most impactful means to reduce emissions from an SAEV fleet, gener
ating up to 95% less emissions than other charging strategies. We also examine the introduction of a carbon tax 
and find that it can further amplify the advantage of smart charging by approximately 1.5 times in the cost- 
effectiveness of emission mitigation.   

1. Introduction 

The transportation sector has been a major source of greenhouse gas 
(GHG) emissions. In 2019, 37.5% of the total CO2 emission in the US are 
from transportation, in which passenger cars contributed 40.5% [1]. The 
state of California, which is one of the largest automobile markets in the 
US, produced about 166 million metric tons (MMT) of CO2 equivalent 
from its transportation sector in 2019 [2]. California has been setting 
stringent goals to combat the rise in GHG emissions. The state has 
already accomplished the goal of reducing statewide GHG emissions to 
1990 levels by 2020, which was set by the California Global Warming 

Solutions Act of 2006 (Assembly Bill 32). Senate Bill 32 then expanded 
the standard to a 40% GHG reduction of 1990 levels by 2030 [3]. Under 
this goal, California Air Resources Board (CARB) strengthened the Low 
Carbon Fuel Standard (LCFS) towards reducing the carbon intensity of 
transportation fuel pool by at least 20% by 2030 [4]. To realize a low 
carbon future, the transportation sector will need to undergo a profound 
transformation towards a more sustainable and efficient system. The 
emerging trends of vehicle electrification, shared mobility, and auton
omous vehicles (AVs) have the potential to transform the transportation 
sector. 

A vast number of studies have proven potential emission benefits 
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from replacing conventional internal combustion vehicles (ICVs) with 
electric vehicles (EVs). Some studies focus on the direct emissions from 
the use phase of EVs [5-12], while others calculate the full life cycle 
emissions [13-18]. EVs have experienced a strong growth in sales over 
the past decade, with global EV stock reaching 10 million in 2020 [19]. 
Many policies are encouraging an acceleration in this trend, for example, 
the Zero Emission Vehicle (ZEV) program in California aims at 5 million 
EVs on the road by 2030 in California [20]. The International Energy 
Agency (IEA) projects that the number of EVs on the road may reach as 
high as 300 million globally by 2030 [19], which could generate a large 
burden of charging load on the power system. Therefore, the integration 
of the transportation and energy sectors is essential. Maximizing envi
ronmental benefits depends not only on the speed of EV uptake, but also 
the decarbonization of the power system [12], as well as realizing the 
potential of managed charging that could avoid additional capacity 
expansion of the grid, and enhance power system flexibility to better 
utilize and offset the growth of intermittent renewable generation. Many 
studies seek to incorporate the scheduling of EV charging into power 
system operation model, and conclude that more significant benefits can 
be achieved by adapting EV charging according to grid conditions [5- 
10]. 

The market of shared mobility has been rapidly growing in recent 
years, which generally includes car sharing (such as ZipCar and Car2Go) 
and on-demand ride hailing (such as Uber and Lyft), with these new 
mobility services provided by transportation network companies 
(TNCs). Previous researches suggest that shared mobility could poten
tially reduce car ownership, since a smaller fleet size is needed to meet 
the same amount of travel demand as private cars [21-23]. This could in 
turn relieve traffic congestion [24] and reduce GHG emissions 
[21,22,25]. 

In addition to some of the recent shifts in transportation through 
electrification and new mobility services, automakers like Tesla, 
Waymo, and Cruise have recently been conducting trials of automated 
vehicles and are planning to commercialize them in the future [26]. AVs 
are expected to improve traffic efficiency via increasing speed and 
reducing travel time [27,28], increase safety by avoiding crashes [29], 
and save energy consumption [30]. However, some studies argue that 
the net energy consumption from AVs could be even higher than tradi
tional vehicles because the drop in marginal cost of driving and travel 
time cost can cause a rebound effect and thus induce even more travel 
demand. Discussions have been going on about the relative magnitude of 
reduced vehicle miles traveled (VMT) versus the induced travel, and 
indicates that the energy and environmental outcomes from AVs alone 
can be very uncertain [24,31-33]. 

Vehicle electrification, shared mobility, and autonomous vehicle 
complement each other in many ways. The high capital cost of EVs and 
AVs can be more easily amortized if adopted in shared mobility, due to 
the higher utilization of capital assets [33]. The increased travel in
tensity of ride sharing could further increase the emission savings of EVs 

on a per vehicle basis [34]. And electrifying AVs could make AVs’ 
emission benefits more promising [27,28,35]. In return, autonomizing 
shared EV fleets could make it easier to conduct centralized optimization 
of charging and routing [36]. Thus, shared autonomous electric vehicles 
(SAEVs), as a synergy of the three technologies, could achieve more 
significant environmental and energy benefits over conventional private 
ICV, compared with application of each technology separately. 

Only a handful of studies have assessed the environmental impacts of 
SAEVs. Greenblatt and Saxena compared the use phase emissions and 
costs of SAEVs with private ICVs [37]. Gawron et al. conducted life cycle 
analysis (LCA) for SAEV [38]. Even fewer studies explore the impacts of 
a full SAEV fleet. Majority of them assume that electricity generation are 
not affected by the operation of SAEVs. For example, Zhang et al. esti
mated SAEV travel demand by simulating each individual’s mode choice 
based on a utility maximizing evolutionary algorithm, and calculated 
corresponding emissions with average hourly emission rate from Cali
fornia Independent System Operator (CAISO) [39]. Iacobucci et al. 
proposed SAEV charging optimization algorithms according to renew
able generation in a microgrid [40] and according to hourly price of 
electricity [41], with the power generation dispatch as a static input in 
both studies. Loeb and Kockelman [42], Iacobucci et al. [36], Liao et al. 
[43], and Yi and Smart [44] used agent based traffic simulation to 
investigate routing and charging algorithms for SAEVs, and the envi
ronmental impact of the proposed strategies were also estimated with 
past data on grid emission factor. Other studies address the interaction 
between SAEV charging and grid operation, but tend to simplify the 
projections on SAEV travel demand and grid development. For example, 
Jones and Leibowicz adopted an aggregated model to incorporate the 
SAEV uptake and charging into grid operation, with a simplified SAEV 
travel demand assumption scaled up from private vehicle travel demand 
[45]. Sheppard et al. conducted similar research integrating aggregate 
mobility and grid models, but based on the current generation capacity 
mix, rather than an outlook into a potentially cleaner power system in 
the future [46]. Furthermore, these studies may overestimate SAEV 
charging flexibility without considering charging capacity limit in their 
models, and lack discussion on more possibilities of charging strategies. 

To address the research gaps mentioned above, this work performs 
an attributional investigation into the emissions from an SAEV fleet, by 
integrating the SAEV charging demand and charger capacity expansion 
into a grid dispatch simulation, while optimizing future renewable ca
pacity expansion in the grid in line with the aggressive climate policy in 
California. We incorporate unique datasets of real TNC trips and EV 
charging activities to simulate the travel demand and charging load of 
the SAEV fleet. Emission outcomes are analyzed with respect to different 
market penetration levels, charging strategies, vehicle occupancy rates, 
and carbon policies, with annual projections from 2022 to 2030. 

The rest of the paper is organized as follows: Section 2 explains the 
methodology and data sources used in this research. Section 3 presents 
and discusses the SAEV emission results from the power system 

Fig. 1. Data sources (blue), intermediate data (gray), model (red), and outputs (green) in the general research framework.  
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simulation. In Section 4, we conclude the major implications and 
outlook of our work. 

2. Data and methods 

The general framework of our research can be seen in Fig. 1. First, the 
travel behavior of SAEVs is simulated based on empirical data from 
TNCs, under different assumptions of the adoption level and occupancy 
rate of the SAEVs (Section 2.1). Then the travel demand simulated is 
used to estimate electricity charging demand and generate hourly 
charging profiles under various charging strategies (Section 2.2). The 
SAEV charging load is then fed into a power system simulation model, 
along with baseload demand data and installed generation capacity in
formation within the Western Interconnect (WECC). The dispatch model 
calculates the optimal generation profiles, which are used to estimate 
the emissions caused by the SAEV charging demand (Section 2.3). 

2.1. Vehicle travel patterns 

Accurate simulation of daily travel patterns of an SAEV fleet is 
fundamental to estimate their electricity consumption. Since there are 
no empirical datasets that currently exist for this new type of service, 
existing ride hailing services could be the best analogue. In this study, 
we assume that SAEVs operate in the same manner as existing TNC 
services when providing trips. We employ a unique dataset of both Uber 
and Lyft in period 3 operation (driving a passenger from an origin to 
destination) that provides the distribution of distance travelled per trip 
and the frequency of travel demand within each hour of a day. The 
probability density function of the trip distances in different hours is 
visualized in Fig. 2. 

From this distribution, we bootstrap the travel distance of an average 
SAEV in each hour from each day, over the years from 2022 to 2030. 
Since these miles only account for operation when driving passengers, 
we then scale the miles by a deadheading factor of 38.5% [47] to include 
the additional miles travelled in periods 1 and 2 (driving in search of 
passengers and driving to pick-up matched passengers respectively). 

We examine three different assumptions for the growth of the SAEV 
fleet based on different proportions of current Uber and Lyft market size, 
which is around 96,000 vehicles in the San Francisco Bay Area of Cali
fornia. Under medium adoption level, the SAEV fleet will be as large as 

10% of current TNC market by 2030. And the low and high adoption 
levels correspond to 5% and 25% respectively. We assume a linear 
growth in the market adoption from 0% in 2021 to 2030. 

According to the design of prospective autonomous vehicles 
providing shared rides, such as the Cruise Origin, we define scenarios 
across a range of assumptions of the average occupancy rate from 1 to 4 
passengers per trip for the SAEV fleet. We assume that under a certain 
SAEV market adoption level, the total travel demand in passenger-miles 
is fixed. Therefore, the size of SAEV fleet is scaled down with the in
crease of vehicle occupancy rate, assuming that the average vehicle 
occupancy of a TNC vehicle is 1.55 in the original data [48]. 

The hourly travel distances of the average SAEV are then scaled up 
according to different SAEV fleet sizes defined by combinations of 
market adoption level and vehicle occupancy rate to obtain the daily 
travel patterns of the SAEV fleet. 

2.2. Vehicle charging behavior 

The daily energy demand of the SAEV fleet is estimated based on the 
travel demand from Section 2.1. Equation (1) shows how the energy 
conversion efficiency rate (kWh/mile) is calculated: 

η =
v*η0 + Pdraw

v
(1) 

where v is the average velocity of SAEVs, which is assumed to be 30 
miles/hour [49]. η0 is the average conversion efficiency of EV power
train, which is assumed to be 0.3 kWh/mile [50]. Pdraw is the average 
additional power draw that the SAEV consumes as it runs. The power 
draw is assumed to be 8.3 kW based on information from automaker 
stakeholders. 

The aggregate daily energy demand of the SAEVs is then allocated 
into each hour of the day to form the hourly charging profiles. Different 
charging strategies are represented by the different hourly distributions 
of the charging load. In this work, 7 different charging strategies are 
defined.  

• “Nighttime Charging”, “Daytime Workplace Charging”, and “Daytime 
Public Charging” strategies are based on charging patterns extracted 
from real-world charging data from the Electric Vehicle Miles 
Traveled (eVMT) project conducted by the Plug-In Hybrid & Electric 

Fig. 2. Trip distance distributions of TNC vehicles every 6 h derived from empirical ride-hailing datasets.  
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Vehicle Center at UC Davis. In the eVMT project, the day-to-day 
usage patterns and charging behavior of EVs are monitored over 
the period of a full year. A total of over 55,000 charging events are 
captured in the data [51-53].  

• The strategy of “Charging Inverse to Netload ’’ is defined according to 
baseload demand data and renewable generation data from the grid 
simulation results, without including the SAEV charging load into 
the model. The netload patterns are extracted, standardized, and 
inversed to generate the charging probability pattern. Scheduling 
charging under this pattern is expected to help consume excess 
intermittent renewable generation and flatten the aggregate demand 
curve in the power system.  

• The pattern of “Charging Inverse to Ride Requests” is based on TNC 
data. The number of ride requests in each hour is obtained, and this 
pattern is standardized and inverted to define the charging proba
bility. Under this strategy, less charging activities are scheduled 
when there are more ride requests, which is expected to be beneficial 
for the ride hailing service provider.  

• Lastly, the “Uniform Charging” adopts a flat charging pattern across 
the period of a day. 

For these six charging strategies, after obtaining the standardized 
average charging pattern of a day as mentioned above, the day-to-day 
hourly charging probabilities are then generated by sampling from 
normal distributions. For each hour, the expectation of the normal dis
tribution is the corresponding value in the average pattern, and the 
variance is derived from the real-world charging data of EVGo. To obtain 
these hourly variances, the charging data in California from 2014 to 
2019 is normalized by day, and the variance of all the charging load in 
each hour is calculated respectively. The daily charging probability 
patterns are then multiplied with the daily energy needed to form daily 
charging profiles. An example of the charging load profiles of these six 
charging strategies are depicted in Fig. 3. These charging profiles are 
part of the demand side input into the power system operation model. 

The final charging strategy is “Smart Charging”, which assumes 
flexibility in charging schedule, making sure that all the energy 
consumed in this day is charged by the end of the day. By including the 
scheduling of SAEV charging into the grid operation model, we allow the 
charging to be adapted according to the real-time price changes in the 
electricity wholesale market. And the optimized smart charging profile 
is an output from the power system simulation. Further elaboration can 
be found in section 2.3. 

Apart from SAEV charging loads, the growing charging load of other 
EVs are also included in the demand side input, the scale of which is 
based on the projection of yearly miles travelled from eVMT data. And 
the pattern of the charging load is assumed to be a combination of 80% 

nighttime charging, 10% daytime public charging, and 10% daytime 
workplace charging [52]. 

2.3. Emissions from power generation 

To simulate the operation of power plants in response to electricity 

Fig. 3. SAEV hourly charging profiles of different charging strategies, in each day of 2030, with medium adoption level and occupancy rate of 1 passenger.  

Table 1 
Notations in the power system optimization model.  

Name Type Description 

g set Generator index 
solar,wind set Subset of g, solar and wind generators 
t set Index for hours 
d set Index for days 
r,o,p set Alias sets of regions 
ca set Subset of r, regions in California 
gtor set Mapping from generator to region 
ttod set Mapping from hour to day 
csolar.cost,

cwind.cost 

parameter Solar and wind capacity cost 

cstorage.cost parameter Storage capacity cost 
ccharger.cost parameter Charging capacity cost 
cCO2 .price parameter Carbon price 
ctransLoss parameter Transmission efficiency rate 
cstorageLoss parameter Storage efficiency rate 
cRPS parameter RPS requirement 
cgen.cost

g parameter Generation cost of generator g 

cCO2 .rate
g parameter CO2 emission rate of generator g 

ctrans.cost
ro parameter Transmission cost from region r to region o 

cdemandLoad
rt parameter Baseload and non-SAEV charging load in region r at 

hour t 
cevHourlyLoad

rt 
parameter SAEV charging load input in region r at hour t 

cevDailyLoad
rd 

parameter SAEV charging load input in region r within day d 

cmaxGen
solar , cmaxGen

wind parameter Initial capacity of solar and wind generation 
cmaxSolar

rt ,

cmaxWind
rt 

parameter Solar and wind generation availability in region r at 
hour t, under initial capacity 

ccharger.cap.min
r parameter The existing charging capacity in the previous 

model year in region r 
xgen

gt variable Generation from generator g at hour t 
xtrans

rto variable Transmission from region r to o at hour t 
xev.flexLoad

rt variable SAEV smart charging load in region r at hour t 
xnew.solar

r ,

xnew.wind
r 

variable New solar and wind capacity installed in region r 

xstorage.cap
r variable Storage capacity installed in region r 

xcharger.cap
r variable Charging capacity installed in region r 

xstorage.soc
rt variable The storage state of charge in region r at hour t 

xstorage.in
rt ,

xstorage.out
rt 

variable The input and output energy to and from the 
storage in region r at hour t  
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demand, we employ the Grid Optimized Operation Dispatch (GOOD) 
model, an economic dispatch and capacity expansion optimization 
model [46,7]. While this study is focused on the SAEV fleet within the 
San Francisco Bay Area, the power system is substantially more inter
connected. Therefore, we simulate the operation of the entire WECC, to 
capture the import and export of electricity across different balancing 
zones. The model co-optimizes the charging scheduling (under smart 
charging strategy) and charger capacity installation along with eco
nomic dispatch of generators and renewable capacity expansion, to find 
the minimal cost combination to obtain a supply–demand balance in the 
power system. The simulation is run on an hourly basis, for four repre
sentative weeks in each season, from 2022 through 2030. Notations in 
the model are explained in Table 1. 

Objective Function: Total cost of the system 
The objective function aggregates the total system cost across all 

generators, time periods, and regions. The cost includes generation cost, 
transmission cost, as well as installation cost for new solar, wind, and 
storage capacity. To avoid charging peaks that requires unreasonable 
scale of charger capacity, the cost of installing charging infrastructure is 
also considered in the objective function [54]. 

min
xgen

gt ,xtrans
rto ,xev.flexLoad

rt ,

xnew.solar
r ,xnew.wind

r ,

xstorage.cap
r ,xstorage.soc

rt ,

xstorage.in
rt ,xstorage.out

rt ,

xcharger.cap
r

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∑

g

∑

t
xgen

gt cgen.cost
g +

∑

r

∑

t

∑

o
xtrans

rto ctrans.cost
ro +

∑

r
xnew.solar

r csolar.cost +
∑

r
xnew.wind

r cwind.cost+

∑

r
xstorage.cap

r cstorage.cost +
∑

r
xcharger.cap

r ccharger.cost

+
∑

g

∑

t
xgen

gt cCO2 .rate
g cCO2 .price

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(2) 

Constraint 1a: Generation should meet total load, with exogenous 
charging behavior 

This constraint ensures real-time balance between generation and 
demand in each region. It is only active when simulating a scenario with 
non-smart charging strategy. The demand side consists of two exogenous 
parameters: SAEV charging load, which is determined as described in 
Section 2.2; and baseload, which represents all the rest electricity de
mand, including the charging load of other EVs. The way that the SAEV 
fleet charge affects the dispatch of generators, the import and export of 
electricity, and the operation of storage. 
⎛

⎜
⎜
⎜
⎜
⎝

∑

g∈gtorgr

xgen
gt +

∑

o
xtrans

otr ctransLoss −
∑

p
xtrans

rtp −

xstorage.in
rt + xstorage.out

rt cstorageLoss

−
(
cdemandLoad

rt + cevHourlyLoad
rt

)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

= 0; ∀t, r (3) 

Constraint 1b: Generation should meet total load, with flexible charging 
behavior 

This constraint is only active when simulating a scenario with smart 
charging strategy. It is identical to 1a, except that the hourly SAEV 
charging load is a decision variable. The smart charging schedule is thus 
determined endogenously by the model and synergizes with the grid 
operation. 
⎛

⎜
⎜
⎜
⎜
⎝

∑

g∈gtorgr

xgen
gt +

∑

o
xtrans

otr ctransLoss −
∑

p
xtrans

rtp −

xstorage.in
rt + xstorage.out

rt cstorageLoss

−
(
cdemandLoad

rt + xevFlexLoad
rt

)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

= 0; ∀t, r (4) 

Constraint 2: Flexible SAEV charging load should satisfy daily charging 
demand 

Under smart charging strategy, while the hourly charging load is 
assumed to be flexible, the aggregate charging demand must be fulfilled 
within a larger time window. 

∑

t∈ttodtd

xevFlexLoad
rt − cevDailyLoad

rd ≥ 0; ∀r, d (5) 

Constraint 3: Charging capacity limit 
The smart charging load of SAEVs per hour is constrained below the 

installed charging capacity. In this way, the model optimizes the 
installed charging capacity and smart charging schedule by balancing 
between the cost generated from installing chargers and the generation 
& transmission cost saved from smart charging. 

xcharger.cap
r − xevFlexLoad

rt ≥ 0; ∀r, t (6) 

Constraint 4: Charging capacity growth 
The total charging capacity of the current model year should be 

greater than that of the last model year. 

xcharger.cap
r − ccharger.cap.min

r ≥ 0; ∀r (7) 

Constraint 5 & 6: Resource availability limit on renewable generation 
These two constraints make sure that real-time solar and wind gen

eration do not exceed the maximum power available from natural re
sources (when the sun shines or wind blows). The limit is based on 
representative solar and wind profiles under initial renewable genera
tion capacity, and the newly installed capacity determined by the model. 
⎛

⎜
⎜
⎝

cmaxSolar
rt

∑

solar∈gtorsolar,r

cmaxGen
solar + xnew.solar

r cmaxSolar
rt

−
∑

solar∈gtorsolar,r

xgen
solar,tc

maxGen
solar

⎞

⎟
⎟
⎠ ≥ 0;∀t, r (8)  

⎛

⎜
⎜
⎝

cmaxWind
rt

∑

wind∈gtorwind,r

cmaxGen
wind + xnew.wind

r cmaxWind
rt

−
∑

wind∈gtorwind,r

xgen
wind,tc

maxGen
wind

⎞

⎟
⎟
⎠ ≥ 0; ∀t, r (9) 

Constraint 7: Renewable generation requirement 
This constraint specifies the share of total generation in California 

that must be fulfilled by renewable energy, which complies with 
Renewable Portfolio Standards (RPS) in Senate Bill 100. This share is 
assumed to increase linearly by year from 30% in 2022 to 60% in 2030. 

⎛

⎜
⎜
⎜
⎜
⎝

∑

ca,t

(
∑

solar∈gtorsolar,ca

xgen
solar,t +

∑

wind∈gtorwind,ca

xgen
wind,t

)

− cRPS
∑

ca,t

(
∑

g∈gtorg,ca

xgen
gt

)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

≥ 0 (10) 

Constraint 8: Storage charging dynamic 
This constraint ensures the real-time energy balance of the grid 

storage. In each hour, the aggregate energy level of the storage batteries 
should be equal to the previous hour’s energy level plus the energy input 
and minus the energy output. 

xstorage.soc
rt − xstorage.soc

r,t− 1 − xstorage.in
r,t− 1 cstorageLoss + xstorage.out

r,t− 1 = 0; ∀r, t (11) 

Constraint 9: Storage capacity limit 
The amount of electricity stored in the grid storage should never 

exceed the installed battery capacity. 

xstorage.cap
r − xstorage.soc

rt ≥ 0; ∀r, t (12) 

Constraint 10 & 11: Storage input/output speed limit 
Based on the performance of current lithium-ion batteries, we limit 

the amount of charging/discharging energy per hour to be below 25% of 
the total capacity of the grid storage device. 

.25xstorage.cap
r − xstorage.in

rt ≥ 0; ∀r, t (13)  

.25xstorage.cap
r − xstorage.out

rt ≥ 0;∀r, t (14)  
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2.4. Scenarios 

We examine a total of 24 scenarios distinguished by their assump
tions on SAEV adoption level, occupancy rate, charging strategy, and 
whether carbon tax is applied in the power market, the settings of which 
can be seen in Table 2. As mentioned in Section 2.1, low, medium, and 
high SAEV adoption levels correspond to 5%, 10%, and 25% of the 
current TNC travel demand market size by 2030 respectively. To 

compare the effects of different charging strategies, SAEV adoption level 
is controlled at medium, and occupancy rate is controlled at 1 passenger. 
Among the charging strategies, three of them are based on human 
drivers’ charging behavior: daytime workplace charging, daytime public 
charging, and nighttime charging. Scenarios under these charging stra
tegies assume that the charging behavior of an SAEV fleet is still largely 
dependent on people’s, or passengers’, daily commute and living 
schedules. The other four charging strategies, on the other hand, assume 
that without the influence of human drivers’ preferences, there are more 
possibilities of centrally managing the charging of an SAEV fleet by 
various criteria: uniformly throughout the day (uniform charging), ac
cording to travel intensity of the fleet (charging inverse to ride requests), 
according to netload level (charging inverse to netload), or via real time 
interaction with the grid operation (smart charging). Comparisons 
among different SAEV adoption levels and occupancy rates are analyzed 
under two charging strategies respectively: daytime workplace charging 
and smart charging. Furthermore, we want to investigate how the 
application of a carbon tax in the power system can affect the SAEV 
emissions, and how different charging strategies synergize with this 
policy. The carbon tax is assumed to be constant over the years, at a price 
of $54.7/tCO2, which is based on the social cost of carbon [55]. 

3. Results and Discussions 

In this section, we present and discuss the results from the scenarios. 
We begin by showing clips of generation and load profiles from the 
power system simulation (Section 3.1). Then in Section 3.2, we present 
carbon emissions from SAEVs over the years, and compare them among 
different assumptions on adoption level, occupancy rate, charging 
strategy, and carbon policy. In Section 3.3, we evaluate the relative CO2 
mitigation cost on the system level by switching SAEV charging strate
gies and how carbon policy influences the results. Finally, in Section 3.4, 
we verify that there is no conflict between the charging and driving 
activities of the SAEVs in the fleet. 

3.1. Generation/Load patterns 

An example of power grid generation and load profile in California in 
one week is shown in Fig. 4. Since SAEVs are assumed to be only in the 
San Francisco Bay Area, the charging load from SAEVs is marginal 
compared with the baseload and other EV loads all over California. In 
the example of a spring week, the total load in each day has 2 peaks at 
around 8:00 and 17:00 respectively. As is seen in the generation profile, 

Table 2 
Scenarios simulated in the model.   

Adoption 
Level 

Occupancy 
Rate 

Charging Strategy Carbon 
Tax 

1 Medium 1 Daytime workplace 
charging 

Yes 

2 Medium 1 Daytime public charging Yes 
3 Medium 1 Nighttime charging Yes 
4 Medium 1 Uniform charging Yes 
5 Medium 1 Charging inverse to ride 

requests 
Yes 

6 Medium 1 Charging inverse to 
netload 

Yes 

7 Medium 1 Smart charging Yes 
8 Medium 1 Daytime workplace 

charging 
No 

9 Medium 1 Daytime public charging No 
10 Medium 1 Nighttime charging No 
11 Medium 1 Uniform charging No 
12 Medium 1 Charging inverse to ride 

requests 
No 

13 Medium 1 Charging inverse to 
netload 

No 

14 Medium 1 Smart charging No 
15 Medium 2 Daytime workplace 

charging 
No 

16 Medium 2 Smart charging No 
17 Medium 3 Daytime workplace 

charging 
No 

18 Medium 3 Smart charging No 
19 Medium 4 Daytime workplace 

charging 
No 

20 Medium 4 Smart charging No 
21 Low 1 Daytime workplace 

charging 
No 

22 Low 1 Smart charging No 
23 High 1 Daytime workplace 

charging 
No 

24 High 1 Smart charging No  

Fig. 4. Generation and load patterns of California in a typical spring week of 2030, with medium SAEV adoption level, occupancy rate of 1 passenger, and daytime 
workplace charging strategy, without applying carbon tax. 
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in 2030, with 46% of the total generation being solar, most of the load 
during the day is met by solar generation. Export of electricity happens 
in the early afternoon due to excess solar generation. Natural gas gen
eration fills most of the gaps when there is not enough renewable gen
eration available to meet the demand. Fig. 5 shows how SAEV charging 
schedules correspond to hourly generation mix under different charging 
strategies. In the two examples, charging inverse to netload aligns better 
with renewable generation, while most of nighttime charging happens 
when non-renewables dominate in the generation mix. 

3.2. Emissions from SAEVs 

To calculate the emissions from the power generation that corre
spond to SAEV charging loads, the average emission rate per hour in the 
power system is calculated and multiplied with the SAEV charging load 
in each hour. 

In Fig. 6, the total annual CO2 emissions from SAEVs under different 
charging strategies are shown over the years from 2022 to 2030. For 
non-smart charging strategies, total emissions generally increase by 
year, mainly due to the gradual increase in SAEV fleet size. Nighttime 
charging and daytime public charging are the most carbon intensive, 

because most of the charging under these two strategies happen at hours 
without a lot of solar generation. Charging inverse to ride requests 
generates similar amounts of CO2 as uniform charging. Daytime work
place charging is the third cleanest overall. It is also the least carbon 
intensive among the strategies extracted from existing charging pat
terns, which are mainly influenced by people’s commuting behaviors. 
Among all the non-smart charging strategies, charging inverse to netload 
is the closest to smart charging in terms of CO2 emissions. Like smart 
charging, this strategy also adjusts charging schedule according to in
formation from the grid, but this information is based on estimated 
projections of renewable generation and demand profiles, instead of 
real-time interaction with the power market. Generally, by adjusting 
SAEV charging strategy without interacting directly with grid operation, 
we observe a CO2 emission reduction of up to 50,000 tonnes in 2030, 
under medium adoption level and occupancy rate of 1 passenger. 

The benefits of smart charging begin to expand as the grid becomes 
cleaner and the SAEV fleet expands. The emission reduction is found to 
be as high as 60,000 tonnes of CO2 in 2030, saving up to 95% of the 
emissions under other charging strategies. However, smart charging is 
not always the best strategy for emission reduction. In earlier years of 
our analysis, when the installed renewable capacity is not high enough, 

Fig. 5. Hourly generation mix in California and SAEV charging load of different charging strategies, on a typical spring day of 2030, with medium SAEV adoption 
level, occupancy rate of 1 passenger, and without applying carbon tax. 

Fig. 6. Total annual CO2 emission caused by SAEVs in California, under different charging strategies, with medium adoption level and occupancy rate of 1 passenger, 
without applying carbon tax. 
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the hourly electricity price does not vary substantially with the fluctu
ation of renewable availability. Thus, smart charging is scheduled 
randomly throughout the day, as is seen in the upper graph of Fig. 7. This 
makes it perform worse than some of the non-smart charging strategies 
in terms of emissions before 2026. With the increase in renewable ca
pacity in later years, the price of electricity tends to drop more sub
stantially when there is a large amount of renewable generation during 
the day. Since the charging is scheduled towards hours with lower 
electricity prices, smart charging patterns tend to become more clus
tered (following renewable generation) as shown in the lower graph of 
Fig. 7. Thus, the smart charging load corresponds to lower emissions in 
later years, which offsets the effect from the fleet size expansion, and 
reveals more significant benefits compared with the other strategies. 
This implies that the effect of adapting the SAEV charging load ac
cording to real-time electricity price signals depends on the renewable 
penetration level of the power system. 

Note that the smart charging pattern in later years is not consistent 
among different seasons. This is due to the different base load patterns in 
different seasons in California. In spring and winter, the base load has 
two peaks during the day; while in summer and fall, the valley is filled 
into a larger peak in the middle of the day by the cooling demand. When 
SAEV charging synergizes with grid dispatch, it tends to fill in the valleys 
to minimize peak load overall, to avoid installation of additional gen
eration capacity. Thus, in spring and winter, the charging is scheduled 
around noon time; while in summer and fall, charging tends to be in 
early morning and late afternoon. 

We also compare emissions from SAEVs across different SAEV 
adoption levels. Generally, the total annual CO2 emissions from SAEVs 
increase linearly with the expansion of fleet size. According to simula
tion results, in 2030, high adoption level of SAEVs generate more than 4 
times more CO2 than low adoption level under daytime workplace 
charging strategy. Switching to smart charging can more than offset this 
impact of fleet expansion. Switching from other charging strategies to 
smart charging can cause an emission reduction of up to 70% more than 
the effect of merely downsizing the SAEV fleet. 

Occupancy rate is another essential determinant of SAEVs’ envi
ronmental impacts. Generally, the total CO2 emission value is inversely 
correlated to the average occupancy rate of an SAEV fleet. Results show 
that there is a 50% decrease in the amount of emissions when occupancy 
rate increase from 1 to 2, a 33% decrease from 2 to 3, and a 25% 
decrease from 3 to 4. The decreasing marginal returns imply that 

environmental benefits can be achieved most efficiently if future SAEV 
fleets can keep an average occupancy rate of at least 2 passengers per 
vehicle. 

On a per-passenger-mile basis, the SAEV emissions are at the scale of 
less than 70 g CO2/mi, which is more than 5 times cleaner than modern 
day ICVs [56]. When calculated on a per-vehicle basis, the SAEV emis
sions under different charging strategies are shown in Fig. 8 (a). The 
scale of the emissions per SAEV is several tons per year. Since the effect 
of fleet expansion is depleted, this value mainly reflects the general 
change of emission rates in the grid during the time that SAEVs charge. 
Generally, SAEVs are less carbon intensive over the years as the grid gets 
cleaner. The emissions from non-smart charging strategies have a trend 
of decreasing at first and slightly increase in the later years. This is 
mainly due to the change in natural gas generation, which takes up more 
than 90% of the fossil fuel generation in California. Due to the higher 
capacity cost of wind generation, the model increases only solar capacity 
to meet the RPS requirements. As solar capacity increases over the years, 
the natural gas generation during the day is gradually replaced by solar 
generation; while during the night, natural gas generation increases due 
to the increasing charging load. The former effect dominates in the early 
years, but after solar has covered most of the daytime demand, the latter 
effect starts to reveal. The emissions from smart charging can be higher 
than some of the other strategies in early years, but it decreases more 
drastically than others in later years due to the flexibility in charging 
pattern. 

Emission outcomes before and after applying carbon tax in the power 
market can also be seen in Fig. 8. From Fig. 8 (a), we can see that 
generally the introduction of carbon tax decreases the overall scale of 
emissions, by forcing a more aggressive adoption of low-carbon gener
ation resources in the grid. In Fig. 8 (b), we show an example of 
comparing the environmental benefits that an SAEV achieves between 
applying carbon tax under a high-emission charging strategy (from red 
dashed line to red solid line) and switching to a low-emission charging 
strategy (from red dashed line to blue dashed line). The former out
weighs the latter in early years. But in later years, as the grid gets 
cleaner, the emission savings from switching to smart charging becomes 
greater than that from applying carbon tax. This result confirms the 
importance of managing SAEV charging schedule in a way that aligns 
with low-carbon generation outputs in the grid. 

Fig. 7. Smart charging profiles in different seasons in 2022 and 2030, under medium adoption level and occupancy rate of 1 passenger, without applying carbon tax.  
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3.3. Relative CO2 mitigation cost by switching SAEV charging strategy 

Next, we evaluate the system-level impact of switching SAEV 
charging strategy on the total emissions and costs in the Californian 
power grid. The charging strategy that causes the most CO2 emissions 
from all generators in California is seen as baseline, which is nighttime 
charging among the scenarios without carbon tax, and daytime public 
charging among those with carbon tax. Then we calculate the relative 
CO2 mitigation and the change in total generation cost if we switch from 
the most carbon-intensive strategy to other strategies. Results for 2030 
are shown in Fig. 9 and Fig. 10, respectively for scenarios with and 
without carbon tax. Generally, switching to less carbon-intensive 
charging strategies (positive CO2 mitigation) could save generation 
cost (negative cost) at the same time. The relative CO2 mitigation and 
cost savings are generally lower after applying carbon tax. This is 
because the total emissions are largely reduced with carbon tax, and 
therefore the effect of switching between charging strategies becomes 
less significant. Despite this decrease in overall values, the relative 
advantage of smart charging compared to other strategies becomes more 
obvious after applying carbon tax. Before applying carbon tax, smart 
charging saves 25% more CO2 and 28% more cost than the second 
cleanest strategy; while with a carbon tax, these advantages are 
increased to 40% more CO2 savings and 42% more cost savings. This is 

because that smart charging can better take advantage of the fluctuation 
in electricity price signals that is amplified by adding a carbon tax. 

The relative CO2 mitigation cost of switching charging strategy is 
calculated via dividing the relative cost by the CO2 mitigation value. 
Results can be seen in Fig. 11, where the scale can reach around $-50/ 
tCO2, with the negative value indicating monetary savings. This implies 
that generally, managing SAEV charging has the potential to be a highly 
cost effective GHG abatement approach. Note that when there is no 
carbon tax, although “charging inverse to ride requests” has relatively 
low absolute values in CO2 mitigation and cost savings, it appears more 
cost effective than other strategies on a per-tCO2 basis. The application 
of a carbon tax, on the other hand, synergizes better with the charging 
strategies that could better utilize renewable generation. 

3.4. SAEV fleet vehicle activities 

Since the model simulates SAEV travel profiles and charging profiles 
separately, we need to verify that the managed charging schedules do 
not conflict with the travel behaviors. In other words, the vehicles 
driving and charging should not add up to exceed the total fleet size at 
any hour. The share of SAEVs that are driving is estimated by dividing 
the total travel distance of the fleet at each hour by an average velocity 
of 30 miles/hour. Assuming that the EV chargers are DC fast chargers at 

Fig. 8. Annual CO2 emission per SAEV in California, under different charging strategies, with medium adoption level and occupancy rate of 1 passenger.  
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150 kW each, the share of SAEVs that are charging is estimated via 
dividing the total charging demand at each hour by the charging rate of 
150 kW. The sum of the two shares tends to be higher: 1) under smart 
charging in later years– where the charging load has higher peaks; and 
2) under higher occupancy rate and lower adoption level – where the 

fleet size is smaller, and thus the share of vehicles charging tends to be 
higher. An additional “worst-case scenario” of low adoption level and 
occupancy rate of 4 passengers is run for verification, which has 1860 
SAEVs in the fleet in 2030. Fig. 12 shows a clip of the hourly shares in the 
typical spring week of 2030 under smart charging. The sum of the shares 

Fig. 9. Relative CO2 mitigation by switching from the most carbon-intensive charging strategy to other charging strategies for SAEVs, under medium adoption level 
and occupancy rate of 1 passenger, 2030, California. 

Fig. 10. Relative generation cost by switching from the most carbon-intensive charging strategy to other charging strategies for SAEVs, under medium adoption level 
and occupancy rate of 1 passenger, 2030, California. 
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remains below 1 even at charging peaks, which indicates that there is no 
conflict between the driving and charging activities in the model on an 
aggregated perspective of the whole SAEV fleet. 

4. Conclusion 

In this study, we expand the GOOD power system dispatch model to 
investigate the potential emission benefits of SAEV fleets, with respect to 
grid development, charging infrastructure expansion, carbon policy, 
SAEV market penetration, travel behaviors, as well as charging strate
gies, under the aggressive climate policy in California. We adopt unique 
real-world TNC vehicle travel data and the empirical charging activity 
data to conduct more precise simulations of SAEV driving and charging 

patterns. Based on these data, the SAEV fleet emissions are projected 
through 2030. 

Results show that under the Californian power grid, SAEVs can be 
more than 5 times less carbon intensive than modern day ICVs on a per- 
passenger-mile basis. The emission benefits would increase as the grid 
becomes cleaner and as SAEV adoption expands. And keeping an 
average occupancy rate of at least 2 passengers per trip could lead to 
significant emission savings. The extent of aligning charging strategy 
with renewable power output is an essential determinant of the envi
ronmental benefits of an SAEV fleet. We consistently find that syner
gizing SAEV charging with grid operation can yield substantial 
economic and environmental advantages. At higher levels of renewable 
penetration, smart charging can generate up to 95% less emissions than 

Fig. 11. Relative CO2 mitigation cost by switching from the most carbon-intensive charging strategy to other charging strategies for SAEVs, under medium adoption 
level and occupancy rate of 1 passenger, 2030, California. 

Fig. 12. Share of SAEVs charging and driving by hour, in 2030, with low adoption level of SAEVs, occupancy rate of 4 passengers, and smart charging strategy, 
without applying carbon tax. 
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other charging strategies. The complement of a carbon tax can further 
amplify the advantage of smart charging by approximately 1.5 times in 
the cost-effectiveness of emission mitigation. However, the emission 
benefits of smart charging are sensitive to the renewable penetration 
level in the power system. It will take some time for the generation mix 
to become clean enough, and for the real-time vehicle-grid communi
cation to realize technically. Before that, managing SAEV charging 
based on netload projections could also achieve considerable emission 
benefits, which could reduce up to 70% CO2 emissions compared with 
other charging strategies apart from smart charging. 

Relevant policies have already been passed in California. Senate Bill 
1014, enacted in 2018, requires CARB and California Public Utilities 
Commission (CPUC) to develop GHG mitigation targets for TNCs on a 
per-passenger-mile basis, which is known as Clean Miles Standard [3]. 
Senate Bill 500, signed in 2021, requires all new autonomous vehicles to 
be ZEVs after 2030. Our results suggest that the adoption of SAEVs can 
be an effective means to meet these targets. Expansion of these aggres
sive policies into other parts of the country or even the world could 
further increase the role of SAEVs. To maximize the emission benefits of 
SAEVs, policymakers should also incentivize renewable integration in 
the grid, enable and encourage real-time interaction between SAEV 
charging operation and the power market, as well as consider the 
implementation of a carbon tax. 

Of course, our findings should be interpreted in light of the limita
tions of the modeling framework. In our assumptions, we do not account 
for the influence of occupancy rate on the deadheading factor, as well as 
the possible decrease in SAEV power draw in the future as technology 
develops. The aggregate modeling perspective abstracts away from 
many details in individual vehicle operations, such as the constraint of 
battery size on the driving and charging schedules of each vehicle. The 
model focuses on the temporal scheduling of SAEV charging, and lacks 
consideration on the spatial feasibility of the charging strategies 
mentioned. Furthermore, if the SAEVs are able to perform real time 
interaction with the grid operation, there is possibility that the fleet 
could inject electricity back into the grid at times with excess demand – 
often referred to as “vehicle to grid (V2G)”. In our model, we consider 
only unidirectional charging and do not include the option of V2G. 

While these limitations may add some uncertainty to our results, we 
have provided insights on how SAEVs can bring substantial emission 
benefits cost-effectively. 
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Appendix A 

The emissions from SAEVs are calculated via average emission rate 
in each hour. To confirm the consistency of results under different 
calculation methods, we also applied marginal calculation. The power 
system simulation is run with and without the SAEV charging loads to 
obtain the marginal CO2 emissions caused by SAEVs. Comparison of 
results under both average and marginal calculations can be seen in 
Fig. A.1. Emissions under marginal calculation are generally higher than 
those under average calculation. This is because under economic 
dispatch, the marginal power plant that is turned on should be more 
expensive than, if not the same as, the average generation cost in that 

Fig. A1. Difference between average and marginal calculation of CO2 emission, on the total annual CO2 emission caused by SAEVs in California in 2030, with 
medium adoption level and occupancy rate of 1 passenger, without applying carbon tax. 
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hour. And the more expensive, the more likely that the power plant is 
more carbon intensive too. This difference is particularly small under 
smart charging and charging inverse to netload, because most of their 
charging hours align with high solar generation hours, and thus the 
marginal generation is still likely to be solar, or generation that has very 
low cost and emission rate. Despite this general difference in absolute 
volume of emissions, it can be observed that the comparison among 
different strategies remains consistent between the two calculation 
methods. 
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