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SUMMARY

California has adopted a substantial number of electric vehicles over the last
decade but there are many challenges associated with the electrification of vehi-
cles, including how they interact with the electricity grid. We employ real-world
feeder circuit level data in California from PG&E to measure the capacity of local
feeders. Wemodel the adoption of electric vehicles down to the census block and
take advantage of real-world vehicle charging data to simulate the future loading
on circuits throughout Northern California. In our highest adoption scenario of 6
million electric vehicles in California, we find that across PG&E’s service territory,
443 circuits will require upgrades (nearly 20% of all circuits) and merely 88 of
these feeders have planned upgrades in the future. The costs of these feeders
are an essential part of a utility’s planning process, and this work speaks to the
importance of electric vehicles on local distribution networks.

INTRODUCTION

Since the passage of California’s Global Warming Solutions Act of 2006 (Assembly Bill 32. California Global

Warming Solutions Act of 2006. Chapter 488, September 27, 2006), requiring an 80% reduction of green-

house gases (GHGs) below 1990 levels by 2050, the state of California has been a global leader in devel-

oping policies to combat climate change. Themagnitude of carbon reductionmeans that all economic sec-

tors in the state must undergo a transition to decrease their emission. As of 2018, transportation remains

the largest contributor of GHGs in California, accounting for 41% of GHG emissions in the state (2000–2018

GHG Inventory, California Air Resources Board. https://ww2.arb.ca.gov/ghg-inventory-graphs). Over the

last decade, a large suite of policies has been passed to reduce carbon emissions from the transportation

sector. These include requirements to use cleaner fuels (Low Carbon Fuel Standards), mandate sales of

zero emission vehicles (Zero Emission Vehicle [ZEV] and Advanced Clean Truck programs), and incentives

for car buyers to purchase clean vehicles (Clean Vehicle Rebate Project, HOV Lane Access, and California

Clean Fuel Reward) to name a few. These policies have helped to accelerate a transition away from tradi-

tional internal combustion engine (ICE) gasoline vehicles toward alternative technologies including full

battery electric vehicles (BEVs), plug-in hybrid electric vehicles (PHEVs, which can operate both on a battery

powered motor as well as a gasoline powered engine), and hydrogen fuel cell vehicles (FCVs).

The market for electric vehicles has developed rapidly over the last decade. The sales of electric vehicles

have also grown substantially: a cumulative 800,000 vehicles have been sold within the state and in 2020

they accounted for nearly 9% of vehicle sales. As a result of their success, California has continued to

push for aggressive adoption goals: in January 2018 former Governor Brown signed an executive order (Ex-

ecutive Order B-48-18, Governor Brown. January 2018) requiring 5 million ZEVs by 2030 and more recently

Governor Newsom announced a ban on sales of new gasoline vehicles by 2035 (Executive Order N-79-20,

Governor Newsom. September 2020). These measures will inevitably trickle down to California’s regulatory

agencies as they plan rules to support and ensure that the Governor’s goals can be met over the next 15

years.

The electrification of the transportation sector poses several interesting challenges for the electricity sector

in California (and outside the state as well, since California imports electricity from outside its borders).

From an energy perspective, reaching the 2030 goal of 5 million electric vehicles could add on the order

of 20 TWh annual electricity demand, an increase of about 10% of total electricity load in California. This

increase comes amidst an overhaul of the state’s electricity system as it strives to meet climate goals

through regulation such as the Renewable Portfolio Standard (RPS) which requires a higher proportion
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of electricity generation from renewable energy sources such as solar or wind. From a power perspective,

charging electric vehicles can represent a relatively higher power demand. Home chargers typically use

Level 1 (about 1 kW) or Level 2 (about 6 kW) chargers, which is substantially higher than most applications

in a residential setting. However, many public chargers employ DC fast chargers most of which are either

50 kW or 120 kW (primarily Tesla superchargers), though there are some applications of 350 kW extreme

fast chargers for a small subset of passenger vehicles and for heavier duty applications. The energy and

power demands related to electric vehicles pose an ongoing challenge for power providers and utilities

across the state, especially given the rapid adoption of electric vehicles over the last decade and the

pace of uptake required to meet California’s aggressive climate goals. Nevertheless, the flexibility of

vehicle charging demand also presents an opportunity for the electricity grid. Below, we provide an over-

view of electricity grid and electric vehicle integration studied in the literature, and provide a framework to

understand our contributions to this area of study.

The uptake of electric vehicles coincides with increased utilization of renewable generation resources.

Vehicle charging provides a unique complementarity to the intermittency of renewables due to their po-

tential flexibility that can be exploited either through smart charging or vehicle-to-grid (V2G) services.

This can be particularly beneficial for coupling with distributed resources to lower costs of renewable sys-

tems and of localized storage systems (Kandilet al., 2018; Klingler, 2018; Liu and Zhong, 2019). Several

case studies of distributed level renewable integration impacts have been demonstrated in regions

including Spain (Hernández et al., 2017) and Shanghai (Chen et al., 2020). In larger scale systems, similar

studies have been conducted to take advantage of smart charging schemes to help integrate with larger

volumes of renewable generation facilities even in the presence of uncertainty in generation due to inter-

mittency (Laurischkat and Jandt, 2018; Ata et al., 2019; Mehrjerdi and Rakhshani, 2019; Langenmayr et al.,

2020; Rezaeiet al., 2020). Studies have investigated these integrated renewable, storage, and EV systems

both on hypothetical circuits (Rahbariet al., 2017; Morshed et al., 2018) and in real locations such as New

York City (Freeman et al., 2017) and regions within China (Sun, 2021). Simply from the perspective of re-

newables and storage integration, these studies demonstrate a substantial theoretical cost savings and

provide valuable insight into the operational aspects of such systems—both on a distributed and larger-

scale systems.

In addition to the cost savings by coupled operation, taking advantage of charging load flexibility also pro-

vides explicit economic benefits through participation in certain markets available to participants in mar-

kets related to the electricity grid. This may include frequency reserve markets (Borne et al., 2018), energy

and reserve markets (Carriónet al., 2019a; Wu and Lin, 2021), and real-time trading services (Meisel and

Merfeld, 2018). Furthermore, widespread adoption of V2G services opens the door to a large number of

value streams, including bill management, resource adequacy, network deferral, energy arbitrage, and

spinning reserves (in addition to the aforementioned markets) (Thompson and Perez, 2020). Many studies

have also examined how flexibility in vehicle charging load can be taken advantage of through a variety of

demand-side mechanisms. These programs include demand response participation, with electric vehicles

providing a large potential benefit due to their relatively large power draw (Aliasghariet al., 2018;

Jabariet al., 2019). Given the complexity and market requirements of many of these services, it is unlikely

that individual customers would be able to capture these benefits; nevertheless they represent a substan-

tial economic opportunity that could be captured in the future. Nevertheless, studies have provided insight

into how consumers should be compensated to entice them to participate in grid programs (Das et al.,

2020).

As electric vehicle demand increases so too does the corresponding load requirements for charging the

vehicles. The expansion of power generation and transmission capacity is therefore a critical question to

address whether the electricity grid can handle the increase in electricity load. This issue has been exam-

ined in capacity investment models (Carrión et al., 2019b) and for transmission systems (Gunkelet al., 2020).

Generally, studies have indicated that the greater amount of load flexibility is taken advantage of, the lower

the capacity requirements are for wholesale generation and transmission within the electricity system.

However, in most examinations of future scenarios, the required capacity increases needed to meet EV

charging loads are still relatively small (Taljegardet al., 2019; Jennet al., 2020).

While the wholesale elements of the electricity grid will likely not be extremely stressed by charging loads

in the near future, the local distribution infrastructure faces a different set of constraints. The work
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conducted in this study is most closely related to capacity issues at this scale. Most grid integration issues

have been at larger wholesale generation and transmission levels, though we outline a limited body of liter-

ature on interactions between EVs and the distribution grid below. Even before the availability of electric

vehicles on the market, Clement-Nyns et al. examined hypothetical impacts on the distribution grid in

terms of power loss and voltage deviations by employing a 34-node test feeder. The results of their analysis

reveal that coordinating charging can significantly reduce power losses and improve power quality by flat-

tening peak power events caused by vehicle charging (Clement-Nyns et al., 2010).

While the benefits of coordinated smart charging are readily apparent for distribution grids, they also face

many barriers including practical attributes of EV flexibility, ability to observe and provide feedback to the

vehicle from the grid (and through smart meters), limitations of EV supply equipment to access the elec-

tricity network, EV communication standards, and a host of regulation and market barriers. A combination

of technical and policy solutions are required to overcome these issues and allow for load flexibility to be

realized (Knezovi�cet al., 2017; Gonzalez Venegas et al., 2021). Several case studies have estimated benefits

in cost savings to transformer capacities when comparing smart charging schemes to uncontrolled EV

charging scenarios: cost savings as high as 32% in the Netherlands (Brinkelet al., 2020) and a reduction

in reinforcement of the distribution grid from 28% down to 9% in Great Britain (Crozier et al., 2020). How-

ever, these models employ simplistic assumptions for charging behavior—an important nuance that can

shift charging loads to problematic coincident peaks depending on the assumptions beingmade. Muratori

most closely resembles the work conducted in this study; however, the impacts on the distribution network

are based on a small case study of households and limited in scope to average attributes of distribution

networks (Muratori, 2018).

This study presents the first empirical evaluation of existing feeder infrastructure and the corresponding

overload impacts on the electricity distribution system when adding electric vehicle charging load. As

the number of electric vehicles on the road continue to grow overtime, our study attempts to quantify

the impacts of their charging loads by determining which distribution network feeders will exceed their

rated capacity thresholds. These impacts on distribution feeders within Pacific Gas & Electric’s (PG&E) util-

ity region are determined in the following steps:

1. Simulation of electric vehicle charging loads across several scenarios of vehicle adoption

2. Application of additional loads to existing loads to each individual feeder within PG&E

3. Evaluate the status of feeders on the basis exceedance of capacity thresholds

Our work takes advantage of highly detailed data on distribution networks from open-source utility data-

bases in California that provides individual transformer capacities and historical load information, a sub-

stantial departure frommodeled assets in previous studies. While the availability of data limits our analysis

to PG&E territory, the findings from our work will have important implications for any distribution networks

that experience substantial electric vehicle adoption. Additionally, the work in this study employs state-of-

the-art empirical data on charging profiles which often differ substantially from how many studies assume

drivers charge their vehicles (e.g. charging as soon as they arrive home from work).

Data description

Integration Capacity Analysis (ICA) data and maps

In 2016, the California Public Utilities Commission (CPUC) established a working group as part of their Dis-

tribution Resource Plans that required utilities to develop a publicly available dataset called the Integration

Capacity Analysis (ICA) map. These maps provide access to contractors and developers to plan siting and

installation of distributed energy resources (DERs) including solar and storage infrastructure. The data

contain information on transformer capacity at the substation level or below, line capacities down to the

circuit level, and load profiles all at high spatial resolution. We show part of the coverage of investor-owned

utility Pacific Gas & Electric’s (PG&E) distribution network in the Greater Bay Area of California (Figure 1).

Across PG&E’s network, we are able to observe 2,135 feeder lines spread across four major regions of Cal-

ifornia: the Bay Area, Central Coast, Central Valley, and Northern California (north of the Bay Area and west

of the Sierra Nevada mountain range). Specific feeder information is contained within the Grid Needs

Assessment (GNA) dataset as part of the ICA. The GNA contains load profile information for each feeder
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within PG&E’s network. We observe the highest and lowest hourly load on each feeder circuit for each

month of the year, as well as projections for changes in future peak load due to energy efficiency improve-

ments and rooftop PV solar installations. As we are primarily concerned with exceeding capacity thresholds

for feeders, we will focus on the highest load periods in the month. Note that there is a large diversity of

both hourly load shapes across the day between feeders, as well as a large diversity in seasonal changes

in peak load between feeders as well. Some feeder lines have fairly constant peak loads throughout the

year (minimal seasonal variation). While peak loads do differ between circuits, the distribution of peak

load across the entire day is relatively constant. Across the 2,135 feeders, the lowest (first percentile)

load reaches 268 kW while the highest (99th percentile) load reaches 15.8 MW (see Figure S1 in the SI).

Electric vehicle miles traveled and residential charging behavior data

Much of the existing literature on electric vehicle charging employs modeling charging behavior based on

large-scale travel diaries of internal combustion engine (ICE) gasoline vehicles. However, there are impor-

tant distinctions between travel behavior between vehicle technologies (particularly for early adopters of

EVs) as well as observed charging patterns compared to modeled patterns. In this study, we employ

data from a multiyear study by the University of California, Davis for the California Air Resources Board

to monitor EV usage in California (Raghavan and Tal, 2020; Tal et al., 2020). The study employed data log-

gers that collected second-by-second vehicle usage data from current EV owners in California. Participants

for the logger study are initially filtered from an online survey which recruits randomly based on a combi-

nation of enrollment for California’s CVRP incentive and from the Department of Motor Vehicle (DMV) re-

cords using stratified random proportionate sampling. The stratification is across five of the largest utilities

in California: PG&E, San Diego Gas & Electric (SDGE), Southern California Edison (SCE), Sacramento

Municipal Utility District (SMUD), and Los Angeles Department of Water and Power (LADWP). Despite

coverage through multiple utility areas, we find that charging patterns throughout different service

Figure 1. Integration Capacity Analysis map for Pacific Gas & Electric (PG&E) utility’s service in Northern California (Greater Bay Area and

surrounding regions)

Black squares represent substations.

ll
OPEN ACCESS

4 iScience 25, 103686, January 21, 2022

iScience
Article



territories do not vary substantially and therefore a full sample can be used to represent the charging pro-

files within PG&E.

The current dataset logs a total of 233 unique EVs consisting of 6 of the most popular vehicle models over the

course of a full year. Since we employ a separate comprehensive dataset for public charging events, we employ

only residential charging events from the logger dataset. The data culminate to a total of 52,146 separate

charging events with a total of 2,991,064 miles traveled. We show several attributes of charging behavior in Fig-

ure 2. In terms of timing of charging,most EV drivers tend tobegin charging their vehicles in the evening starting

around 4 or 5 PM extending through midnight. We observe a large peak starting at midnight due to automatic

charging timer delays in vehicles that allow users to delay the start of their charging until a preset time (many

vehicles have a default setting at midnight). The average length of a single residential charging session is about

three and a half hours, though there is a distinct difference in distribution between PHEVs and BEVs in Figure 2.

This is likely due to the difference in battery sizes between PHEVs (which will tend to have smaller batteries) and

BEVs. This is also reflected in the amount of electricity dispensed per charging event, with full BEVs averaging

14 kWh compared to PHEVs averaging 4.8 kWh. One of the most notable differences between many modeling

approaches in existing studies compared to the empirical data is that vehicles are often assumed to charge every

day, as well as to charge until the vehicle is fully charged. However, in the empirical data, we find that neither of

these assumptions holds true and most EV owners intermittently charge their vehicle throughout the week and

that many charge events do not fully charge the battery a 100% state-of-charge (SOC). These assumptions are

particularly important in simulating the electricity load on electricity infrastructure.

Public and work charging behavior data

While charging EVs at public charging stations accounts for a relatively small proportion of overall charging

events (Lee et al., 2020), a substantial amount of the charging that occurs at public infrastructure is at DC

fast charging stations which charge vehicles at significantly higher power compared to residential charging.

Most charging at home is typically at Level 1 or Level 2, which usually corresponds to 1 kW for the former

and around 6–7 kW for the latter. In comparison, DC fast charging stations are at least 50 kW with newer

stations at 100 kW and Tesla superchargers at upwards of 120–150 kW. Extreme fast chargers are even be-

ing developed to charge at rates of 350 kW (Jennet al., 2020). Despite the lower number of events, the

higher power requirements can easily exceed the local line or transformer capacities of electricity distribu-

tion infrastructure—a single car charging at 50 kW is equivalent to the power draw of fifty vehicles simul-

taneously charging at their home on a single circuit.

To simulate future public charging events, we employ a massive dataset consisting of nearly 6 million

charging events from 2014 through 2019 in California. The data contain comprehensive records from

several charging network providers (including EVGo, Chargepoint, and Electrify America). Similar to the

eVMT dataset we use for characterizing residential charging behavior, each record contains information

on the start and end time of the charging event, the total amount of power charged, and the location/char-

acteristics of the charging station. We observe a substantially different charging behavior for public

charging in comparison to residential charging with a uniform peak starting around 3 PM till around

midnight with a relatively smaller discrepancy between off-peak hours compared to residential charging.

Additionally, the average electricity dispensed at public chargers is lower in quantity compared to residen-

tial charging at 12.6 kWh per event, despite the higher power available in public chargers.

The charging behaviors are then applied to the distribution of forecasted adoption of EVs throughout Cal-

ifornia (see Figure S2 in the SI). The remainder of our study presents our results describing our EV charging

load simulation, the diversity of load impacts through case studies of individual feeders, and an overview of

aggregate impacts on distribution networks throughout California; lastly, we provide a discussion of the

implications of our findings and recommendations for policy and future research.

RESULTS

We find that the growth of electric vehicles in California will inevitably lead to stresses on the electricity dis-

tribution infrastructure due to the additional electricity demand from charging these vehicles. Our results

demonstrate the magnitude of these impacts across different scenarios of electric vehicle adoption that

may correspond to levels of penetration over the next decade. The findings are organized into three major

sections: 1) results from the EV charging load simulation, 2) investigation of the diversity of load impacts on
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Figure 2. Summary of distributions for residential charging events from logged EVs in California

Distributions are provided for the starting hour of charging events (top), duration of each charge event broken down by

BEV and PHEV (middle), and the energy dispensed per charging event broken down by BEV and PHEV (bottom).
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individual feeder circuits, and 3) an overview of aggregate impacts on feeders across PG&E’s service ter-

ritory. All results from our work are based on impacts of feeders within PG&E regions.

Charging load simulation

A sample of simulated vehicle charging outcomes can be seen in Figure 3. While the red line shows the

median load value for 1,000 vehicles over the course of a day, we observe a substantial amount of variation

in load (+/� 30% of the median load) due to the variability of vehicles deciding to charge on a given hour as

well as the speed of charging from the bootstrapped simulation. It should be noted that while there are

1,000 vehicles with a peak load of 1.5 MW, this does not necessarily mean that the majority of charging

is on Level 1 chargers, but also reflects the fact that not all of the vehicles will charge every single day,

thus leading to lower total load than if vehicles were to choose to charge to full capacity every day (as is

assumed in most models in the literature). From around 6 AM through 6 PM, we observe a low amount

of charging load. Despite higher power events taking place during the day from DC fast charging at public

stations, the proportion of charging events that happens during this time period is relatively small

compared to residential charging. However, starting around 7 PM, charging load demand rapidly grows

up until midnight before beginning to decrease in the early morning. The peak load almost always begins

at midnight due to timer settings within the vehicle that are programmed to start at 12 AM. While we sam-

ple electric vehicles across the state, we do not find substantial differences in charging patterns between

utility territories and therefore apply a bootstrap of our full sample to simulate charging load within PG&E.

When comparing the shapeof the chargingdemand load tobaseloadelectricity demand, thepeaks arenot coin-

cident. However, peak baseload often occurs in the early evening in certain regions and seasons which coincides

with the time that charging load demand begins to increase for the day. Additionally, we note that charging de-

mand is lowest during theday, which is nearly the opposite profile of renewable solar generation.While this issue

is not particularly relevant when considering distribution infrastructure impacts for utility-scale solar, residential

rooftop and local solar generation can have a mitigating effect on transformers and feeder lines if utilized

correctly. This points to substantial opportunity for managed charging events, even with smart charging (as

opposed to vehicle-to-grid), by load shifting many of the peak events can be substantially ameliorated if not

outright eliminated—thus reducing the need for transformer and other distribution infrastructure upgrades.

Load impacts on individual feeders

Unlike many studies of grid management at the wholesale generation and transmission level, there is a

massive diversity of infrastructure impacts at the distribution level. Our work examines the effect of
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Figure 3. Simulated aggregate electric vehicle load of 1000 full BEVs with a ratio of 84% long-range vehicles

(>100 miles) and 16% short-range (<100 miles) over the course of a full day with 30 trials to represent the

variation seen in a single month.
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electric vehicle adoption throughout California, ranging in scenarios from 1 million vehicles (slightly

beyond existing EV volumes in 2021) up to 6 million vehicles (approximately 20% above California’s

stated goals of reaching 5 million EVs by 2030). Owing to the variation in the shape of baseload demand,

the effect of additional charging load on reaching capacity thresholds differs substantially between

feeders. It is important to note that the additional charging load is not a uniform effect across the

year. In Figure 4, we show an example of a particular PG&E feeder with approximately 3,800 EVs added;

its capacity threshold is exceeded on peak load days in only 3 months of the year. In many other months,

the headroom (the amount of capacity between the baseload and feeder capacity) can be decreased by

as much as 60%. Analysis over a full year provides insight into the frequency and intensity with which

threshold capacities are reached, as these events increase about those two attributes, the faster the

hardware begins to degrade. Across all feeders in our analysis, we find that the maximum exceedance

of load capacity reaches over 300% of a feeder’s threshold (in Sonoma County). Additionally, EV loads

may increase the amount of time that threshold capacities are exceeded—extended periods of time

in exceedance can accelerate the degradation of infrastructure (for example, decreasing transformers’

ability to passively cool). In extreme cases, we identify instances of loads exceeding capacity as long

as 22 h (in West Sacramento).

Ideally, we would run our simulation and add charging load across a load on the feeder across the full year.

Unfortunately, the data are not readily available, but we are able to observe seasonal effects on peak load

events, allowing us to be confident on results for feeders that do not reach their thresholds.

Feeder threshold capacity being reached is one example of an outcome from adding charging load to the dis-

tribution system.Generally, additional charging load can lead to twoother possibilities: 1) the loadwould fail to

reach the capacity threshold of the feeder or 2) the feeder’s threshold is already exceeded during peak events
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Figure 4. Example of the peak load day event in each month of the year for a single feeder circuit with a capacity of about 10 MW

In a scenario of 6 million electric vehicles, we forecast 3,763 vehicles adding charging load to the feeder. The threshold capacity of this feeder is exceeded in

three months of the year (January, September, and December) and is dependent on the peaking of baseload. Black line: Baseload. Purple line: Baseload +

EV Load. Blue line: Feeder Capacity.
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and additional charging load simply accelerates hardware degradation in the feeder network. In the former

case, the existing distribution network can handle the additional load from charging EVs, though the instances

of this case decrease as adoption of EVs increase over time and corresponding charging loads increase

throughout the state. These issues are discussed in the aggregate in the following section.

Aggregate impacts of charging load on distribution systems

Ultimately, the importance of EV charging load depends on how frequently the additional electricity de-

mand stresses the distribution network (which we demonstrate in the previous section as when feeder ca-

pacity limits are reached). In Figure 5, we can view how feeder circuits (represented at the centroid of their

respective networks as points) become increasingly stressed as more electric vehicles are adopted. The

percentage of remaining headroom decreases on average, particularly in regions with large forecasts of

4 million EVs 5 million EVs 6 million EVs

1 million EVs 2 million EVs 3 million EVs

Percent Headroom
Decrease From EVs

0%−1%

1%−2%

2%−5%

5%−14%

14%−100%

Figure 5. Decrease in headroom (spare capacity) of feeder circuits (represented as points at the centroid of the network) during peak load events

due to electric vehicle charging

Red dots indicate feeder circuits that would exceed their rated capacities due to vehicle charging and black X’s indicate feeders whose capacities are

exceeded during peak load regardless of EV charging.
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EV adoption. Perhaps most striking is the increasing density of circuits whose threshold capacity is met

(shown as red points) as more electric vehicles are introduced onto distribution networks throughout the

state. While many feeders can retain loads below their thresholds, our simulation of vehicle charging re-

veals a non-negligible amount of required upgrades to the distribution system to support the increased

demand. We also note that the final vehicle adoption scenario represents only the upgrades likely required

over the next decade. If California were to meet its decarbonization goals by 2045, this would probably

require upgrades across the entire distribution network.

In PG&Es Grid Needs Assessment, the utility provides information on feeders that have planned capacity

upgrades in their distribution network. We find that the necessary upgrades are inadequate to meet the

increased load demand from EV charging. Of feeders that experience charging load demand beyond their

threshold capacity, only a fraction of these feeders has planned upgrades (see Figures 6 and 7, note the

difference in axis scales). In the 6 million vehicle scenario, there are a total of 443 feeders exceeding their

capacity threshold, yet only 88 of these feeders will have upgrades that will allow them to feasibly operate in

the long-term. As the number of electric vehicles increases, we observe that the proportion of the coinci-

dent peak attributable to vehicle grows continuously. For example, as seen in Figure 6, within the San Fran-

cisco Peninsula and 1 million electric vehicles in California, the majority of feeders contribute less than 5%

(with the highest around 7%) of peak load. By the time 6 million vehicles are adopted in California, charging

demand is responsible for upwards of 20% of peak load (and reaching as high as 30%). In San Jose, Figure 7,

a similar pattern can be observed: under a 1 million EV adoption scenario the contribution to peak load is

only 5% or lower, while the proportion of peak load reaches as high as 15% once adoption levels reach 6

million EVs in California.
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Figure 6. Status of feeders in the San Francisco Peninsula (spanning from the south of San Francisco City to the city of Santa Clara) showing the

peak load relative to the feeder load capacity and the proportion of the peak load coming from electric vehicle charging

The results span across 6 scenarios of EV adoption. Some feeder lines are planned to be upgraded (shown as a triangular shape), though the majority of

feeders exceeding the threshold capacity are not planning to be upgraded.
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We are also able to provide some insight into the relative timing of peak loads. This information is an essen-

tial parameter for operators seeking to identify opportunities for flexibility and how load shifting of

charging demand may help to mitigate increasing the intensity of peaks across feeders in specific regions.

In Figure 6, on the San Francisco Peninsula, we observe that most of the peak events at on the feeder occur

at approximately 6 PM. However, these peaks may differ by region as we observe in San Jose in Figure 7,

there is a much wider distribution of peak times beginning around 3 PM through around 6 PM—though the

peaks with highest EV intensity tend to be in the latter hours closer to or at 6 PM.

Across PG&E’s distribution network, the demand load from electric vehicle charging clearly has a large ef-

fect on peaking load beyond the capacity threshold of feeder lines. Additionally, the majority of these

events do not have planned hardware upgrades, which may result in widespread accelerated degradation

of distribution networks in Northern California.

DISCUSSION

The state of California has some of the most aggressive climate policies in the world through their host of

legislated and regulated policies (Cap and Trade, Low Carbon Fuel Standards, Renewable Portfolio Stan-

dards, and the Zero Emission Vehicle mandate to name a few). The contribution of the transportation sector

to the state’s emissions has thus motivated many of California’s regulatory agencies to target transporta-

tion for decarbonization. The trend in electric vehicle adoption over the last decade has reflected many of

the successes of these policies to push the technology to be accepted by more of the population every

year. However, a broad shift toward electric vehicles may lead to substantial impacts on the electricity grid.
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Figure 7. Status of feeders in the city of San Jose showing the peak load relative to the feeder load capacity and the proportion of the peak load

coming from electric vehicle charging

The results span across 6 scenarios of EV adoption. Some feeder lines are planned to be upgraded (shown as a triangular shape), though the majority of

feeders exceeding the threshold capacity are not planning to be upgraded.
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Our work focuses on the distribution infrastructure, primarily consisting of the grid network between local

substations and the end customers. We examine several scenarios of electric vehicle adoption in California,

up to 6million EVs, using an existing EV adoptionmodel (EV Toolbox, see Supplemental information) which

allows us to locate electric vehicles throughout the state at a high-level of spatial resolution. We then simu-

late vehicle charging demand and perform a case study of Northern California utility Pacific Gas & Electric’s

distribution system. Owing to the wide variety of baseload demand and available capacity on local feeder

lines, the effect of adding electric vehicle charging load differs substantially between feeders on PG&E’s

network and over different periods of the year. The impact on feeders can be negligible for instances where

the additional electricity load does not approach the threshold capacity of feeder lines, but when loads

exceed peak capacity of existing hardware this may lead to accelerated degradation of equipment on

the network. Degradation can be accelerated based on the relative intensity of peaks beyond capacity

as well as by the length of time that capacity is surpassed. Across the population of feeders on PG&E’s

network, we observe both instances with peak intensities reaching 300% of capacity as well as feeders

whose thresholds are surpassed for over 22 h within a single day. In aggregate, issues related to capacity

availability become increasingly frequent at higher volumes of electric vehicles. In our scenario of 6 million

EVs adopted across California, over one-fifth of feeders have their capacities exceeded due to charging

events—only a fraction of these feeders are planned to be upgraded by the utility over the next few years.

The impact of charging load on the distribution network will likely have large impacts on utilities

throughout California over the next decade and regulatory agencies such as the California Public Utilities

Commission and the California Energy Commission will likely play a critical role in assisting utilities to miti-

gate these issues.

Limitations of the study

Our work suffers from several shortcomings in data availability and assumptions that we or others may

improve upon in future work. Firstly, our work only examines peak hourly load for each month whereas a

true indication of frequency of load exceeding capacity would require hourly baseload data across the

entire year. Secondly, patterns of charging have slowly evolved over time—the shape of charging load

has shifted over the last decade as different consumers adopt the technology and as battery sizes increase

over time. While we base our simulations on empirical data, future charging load may differ from patterns

that we observe today. Future work can augment our analysis by including forecasts of the electrification of

medium and heavy-duty vehicles that will likely have an even larger impact on distribution systems due to

the high-power requirements to charge those vehicles. Additionally, work examining the potential to miti-

gate the impacts of vehicle charging on distribution systems by taking advantage of the inherent flexibility

of vehicle charging may prove to be critically important to reducing some of the costs associated with EV

adoption on the electricity grid. Lastly, we are limited by the attribute information provided through ICA on

the physical characteristics of the feeder hardware. Additional data on voltage and current ratings of

feeders could augment the analysis and provide better insight into the degradation of the distribution

system.

STAR+METHODS

Detailed methods are provided in the online version of this paper and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY

B Lead contact

B Materials availability

B Data and code availability

d METHODS DETAILS

B Characterizing transformer and feeder circuit capacities

B Electric vehicle adoption using EVtoolbox and load simulation

B Spatially connecting distribution infrastructure to EV adoption

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.isci.2021.103686.

ll
OPEN ACCESS

12 iScience 25, 103686, January 21, 2022

iScience
Article

https://doi.org/10.1016/j.isci.2021.103686


ACKNOWLEDGMENTS

We would like to thank the Alfred P. Sloan Foundation for funding our work under grant G-2019-11397. We

would also like to thank Seth Karten and Michael Fortunato for assisting with the graphical abstract.

AUTHOR CONTRIBUTIONS

Conceptualization, AJ and JH; Methodology, AJ and JH; Investigation, AJ and JH; Writing – Original Draft,

AJ; Writing – Review & Editing, AJ; Funding Acquisition, AJ; Supervision, AJ.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: August 2, 2021

Revised: November 10, 2021

Accepted: December 20, 2021

Published: January 21, 2022

REFERENCES
Aliasghari, P., Mohammadi-Ivatloo, B., Alipour,
M., Abapour, M., and Zare, K. (2018). Optimal
scheduling of plug-in electric vehicles and
renewable micro-grid in energy and reserve
markets considering demand response program.
J. Clean. Prod. 186, 293–303. https://doi.org/10.
1016/j.jclepro.2018.03.058.

Ata, M., Ereno�glu, A.K., Sxengör, _I., Erdinç, O.,
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead con-

tact, Alan Jenn (ajenn@ucdavis.edu)

Materials availability

This study did not generate new unique materials.

Data and code availability

Datasets for distribution network information and electric vehicle projections are available in the key re-

sources table. Any additional information required to reanalyze the data reported in this paper is available

from the lead contact upon request. All original code has been deposited on GitHub from https://github.

com/headisbagent/EV_DistributionGrid_Analysis. DOI for initial release: https://doi.org/10.5281/zenodo.

5773655.

METHODS DETAILS

Characterizing transformer and feeder circuit capacities

We combine the Grid Needs Assessment capacity data with the feeder load data to assess a baseline of

load demand for feeder overloading. In Figure S1 in the SI, we show the range of feeder capacities as

well as their corresponding peak load across the year within PG&E’s service territory. Note that the capac-

ities are not physical thresholds, but rather are thresholds set to maximize operational longevity across the

circuit and for infrastructure equipment on the feeder line. We observe that approximately 15% of feeders

in the data will exceed their capacity threshold at least once across a full year (though to limitations in the

availability of hourly data across the entire year, we are not able to observe how often peak load exceeds

the capacity). These events will accelerate the degradation of distribution infrastructure, particularly the

more often they occur. Our study simulates EV load across a range of forecast assumptions to observe

how additional load from charging events, particularly as California advances the technology to meet their

climate change goals, will increase stress on distribution infrastructure as peak loads are pushed upwards

toward feeder line capacity limits.

Electric vehicle adoption using EVtoolbox and load simulation

We employ an electric vehicle adoption forecasting tool called EV Toolbox used to generate official esti-

mates for California Environmental Protection Agency’s (CalEPA) planning forecasts for statewide trans-

port decarbonization (Tal et al., 2020; Brown et al., 2021). The tool adopts ZEVs through a series of assump-

tions: electrification occurs at the household level one vehicle at a time, income and housing type are the

primary explanatory variables (wealthier households and households with the possibility of installing

charging infrastructure), relative proportions of household types and vehicle ownership remains static,

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Distribution network data Integrated Capacity Analysis Maps https://www.pge.com/en_US/for-our-

business-partners/distribution-resource-

planning/distribution-resource-planning-data-

portal.page?ctx=large-business

Electric vehicle adoption projections EV Toolbox https://phev.ucdavis.edu/project/uc-davis-

gis-ev-planning-toolbox-for-mpos/

Software and algorithms

R 4.1.2 The R Project for Statistical Computing https://www.r-project.org/
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and the stock of vehicles stays relatively constant. More details on the adoption model can be found in pre-

vious studies employing the EV Toolbox model—our work mainly employs outputs as scenarios of

adoption.

Our work makes no assumptions on the speed with which EVs are adopted but instead takes the spatial

distribution of the vehicles from the EV Toolbox as a given. Rather than approximate a volume of EVs in

a certain year, we simply examine scenarios of EV penetration. For example, Figures S2 in the SI shows

the spatial distribution by census block groups of electric vehicles in a scenario with 6 million EVs with a

split of 75% BEVs and 25% PHEVs. It is uncertain when this scenario would occur, but if California were

to keep pace with its stated goal of 5 million EVs on the road in 2030, it is highly likely that the scenario could

be achieved before 2035. Note that when dividing the count of EVs registered in each region by quantile,

the bottom 80th percentile has on the order of several hundred vehicles per census block group (which cor-

responds to the average population per block group between 600 and 3,000) though the upper percentiles

include as high as 20,000 EVs within a single block group. We ultimately examine scenarios of EV adoption

in increments of 1 million vehicles adopted up to 6 million EVs.

Additionally, in the eVMT data we observe differences in charging behavior between electric vehicle

models that are primarily characterized by the size of battery and corresponding range of the vehicle.

As a result, we also separate the forecasted electric vehicles are divided into long-range and short-range

BEVsand PHEVs. This division is conducted by examining empirical data on EV sales in California—employ-

ing data from the Clean Vehicles Rebate Program, we find that long-range BEVs account for 84% of full bat-

tery electric vehicles while long-range PHEVs account for 58% of plug-in hybrids. Charging loads are boot-

strapped from the eVMT data, with a separate distribution for each short/long-range PHEV and BEV vehicle

types respectively. The bootstrapping procedure is conducted by generating separate distributions of

hourly charging probabilities for the vehicle types and charging speeds from our observed data. We

then probabilistically sample each hour of the day based on these distributions to determine whether a

vehicle is charging in each hour (for every vehicle type separately). The individual charging profiles are

then summed to generate an aggregate charging load profile within each census block group. The empir-

ical data contain information on the timing and speed (power) of charging, allowing us to accurately repre-

sent the charging patterns of existing vehicles for a simulated volume of new electric vehicles in California.

Spatially connecting distribution infrastructure to EV adoption

One of the challenges of connecting electric vehicle charging events to the grid is that the electric vehicle

adoption locations from EV Toolbox operate in different spatial regions than the distribution network.

There are two issues of misalignment: a single census block group can contain multiple feeder circuits

and a feeder may also extend across multiple block groups. To solve this issue, we re-allocated EVs

from census block groups down to census blocks based on the proportion of populations within the block

for each block group. Once vehicles are allocated to census blocks, we perform a spatial intersect between

the blocks and the distribution network, a procedure which assigns a block to a specific feeder line. When

attempting this procedure with a block group, multiple feeders would be assigned to a single group. How-

ever, since census blocks are small enough to avoidmost of themisalignment issues, we can spatially match

feeder circuits to individual census blocks—thus allowing us to assign the forecasted EVs within census

block groups to each of the feeders across PG&E’s service area.
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