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A B S T R A C T

Fast-growing freight activities over the decades have become one of the major contributors to air pollution,
leading to many efforts in freight decarbonization and electrification. However, the development of freight
electrification is slow due to technological uncertainty, slow charging, high capital cost, etc. This paper analyzes
the potential impact and benefit of heavy-duty vehicle (HDV) electrification and automation on fleet cost,
infrastructure cost, the electricity grid, and environmental outcomes. In this work, we extended the vehicle
electrification benefit analysis tool: Grid-Electrified Mobility (GEM) model, which had primarily been used to
study light-duty passenger vehicles (LDVs), to analyze heavy-duty vehicle electrification. The extended model is
derived for freight transportation electrification, and different freight electrification and automation adoption
scenarios were analyzed. We find that the increased penetration of automated electric freight fleets within
other types of electrified freight fleets from 1% to 99% will result in an overall cost reduction of 18.2%, fleet
size reduction of 20.4%, and lower peak load reduction of 14.3%.
1. Introduction

The transportation sector is undergoing a transformation through
the introduction of on-demand mobility and vehicle automation thanks
to a variety of emerging mobility technologies [1]. These advances,
combined with electrification, could create new synergies that would
provide high-quality, low-cost, and energy-efficient mobility at scale
[2]. However, the adoption of plug-in electric vehicles has been rel-
atively slow for several reasons, including technological uncertainty,
slow charging, range anxiety, and higher capital costs than other types
of vehicles [3,4]. This is especially true in the freight industry, partic-
ularly around heavy-duty truck electrification and operation. As major
truck fleet operators and truck manufacturers have announced plans to
accelerate truck electrification, filling these gaps in system modeling
capabilities will be crucial. For example, Walmart aims to electrify its
entire truck fleet within a decade [5]. The uptake in the adoption of
electric trucks is important in the context of rising freight demand,
which is projected to grow by 52% from 397 billion miles in 2018 to
601 billion miles in 2050 projected by U.S. EIA [6]. While there is still a
great deal of uncertainty around the exact impact that automated vehi-
cles will have on the transportation system in the coming decades [7],
many believe that they could soon become a substantial part of the
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transportation system, dramatically disrupting conventional modes of
mobility.

Vehicle cost–benefit analysis has been widely studied in the past
decades with the evolution of vehicle electrification/decarbonization
technology. With the wide application of hybrid electric vehicles
(HEVs), many studies have investigated the cost–benefit of HEVs. In
[8,9], the team in NREL conducted a cost–benefit analysis to compare
the costs (including vehicle purchase costs, energy costs, and battery
costs) and the benefit of petroleum consumption reductions between
plug-in hybrid electric vehicles (PHEVs) and conventional vehicles.
They found that while PHEVs can result in over 45% of petroleum
consumption reduction, the long-term projection cost of PHEVs can
be over $8000 higher than conventional vehicles. Due to the great
fuel-saving potential, governmental support is needed to accelerate
the PHEV deployment. In [10], the authors presented a cost–benefit
analysis of hybrid and electric buses in fleet operation. They found
that PHEV and electric buses have a great potential to reduce energy
consumption and emissions, and the cost efficiency also depends on the
routing and scheduling of the buses. In [11], the authors introduced
hybrid energy system modeling and conducted a cost–benefit analysis
of hybrid energy systems for locomotives. In several other studies,
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researchers have also examined the vehicle-level cost–benefit analysis
for electric vehicles (EVs) compared to fuel-cell vehicles. In [12], the
authors investigated the economic validity of fuel cell vehicles (FCVs)
and (EVs). Their study found that the FCV diffusion is not economically
beneficial until 2110, whereas EV diffusion might become beneficial by
2060, considering increasing gasoline pricing and emissions abatement
costs. In [13], the authors studied the impact of EV energy storage
with vehicle to grid (V2G), and identify the potential benefit of EV
deployment to future energy pricing. In [14], the authors developed
a case study to perform a cost–benefit analysis (including the energy
sector, transportation sector, and household sector) to support the
decarbonization scenario for 2030 in Italy. In this study, they found that
public transport and electric mobility improvement have significant
environmental and economic benefits. These studies mainly focused
on the environmental and fuel consumption related cost–benefits for
individual vehicles. Moreover, the primary focus of the above studies
is on passenger vehicles, and freight vehicle electrification is seldom
considered. In Hu et al. [15], the authors reviewed the EV fleet
management in the smart grid from a control and optimization aspect.
This review paper summarized state-of-the-art studies on EV fleet
management control/optimization approaches taking into account the
impact of the smart grids. However, the freight electrification studies
are also not included in this review. In Tong et al. [16], the authors
studied the GHG emissions for medium and heavy-duty vehicles based
on an analysis of different natural gas pathways for MD/HDVs. This
study identified the projection of natural gas usage to different freight
fuel types and analyzed fuel consumption based on fuel usage, as well
as the fuel consumption and GHG emissions originating from freight
vehicles. They found that electric trucks reduce emissions significantly
(31%–40%) compared to diesel or gasoline trucks. In Gao et al. [17],
the authors conducted vehicle-level simulation and energy consump-
tion analysis for plug-in hybrid electric trucks and battery electric
trucks. Their results showed that electric trucks not only reduce energy
consumption but also achieve significant energy cost savings (by 29%
to 44%) compared with diesel fuel trucks. In Klauenberg et al. [18],
the authors studied the potential users for vehicle electrification in
commercial transport. They analyzed the economic sectors and con-
duct surveys with fleet managers to analyze the vehicle electrification
potential. The above freight-related cost–benefit analysis considered
the influence of freight electrification from multiple avenues. However,
there is still a lack of comprehensive benefits analysis that studies the
influence of freight electrification across environmental, economic, and
grid impacts.

Overall, the urgent need to decarbonize the transportation sector
combined with falling battery prices has spurred industry and policy
interest in long-haul truck electrification. Understanding the charging
behavior and resulting loads from freight electrification will be critical
for the smooth operation of the electric grid and will have far-reaching
impacts on the environment in the form of greenhouse gas (GHG)
emissions and air pollution. As such, this work has aimed to assess
the benefits of heavy-duty truck electrification and emerging vehicle
electrification opportunities in micro-mobility markets using the Grid-
Integrated Electric Mobility Model (GEM) and Medium and Heavy-Duty
Electric Vehicle Infrastructure — Load Operations and Deployment
(HEVI-LOAD) tool. This national model simultaneously optimizes the
provision and operation of heavy-duty autonomous electric vehicles
(HAEVs) to provide electrified goods mobility alongside an economic
dispatch of power generation.

Our work examines a dynamic future where increasing levels of
renewable energy are being added to the electric grid while vehicle
electrification is simultaneously on the rise. The impacts of integrat-
ing these technologies require new analytical approaches that couple
capabilities across the transportation and power sectors. This work
has further developed the GEM model to explore these dynamics and
the impacts of an integrated intelligent transportation-grid system in
2

which mobility is served by either human-driven electrified trucks or
autonomous electric trucks, charging is responsive to costs on the grid,
and power resources are dispatched in merit order to serve electricity
demand.

In previous works, the phase-one Grid-Integrated Electric Mobility
model (GEM v1.0) was developed for passenger vehicle benefit analysis.
This model can analyze the energy use, grid integration, and envi-
ronmental and cost impacts for electrified mobility sectors including
private light-duty EVs and shared automated light-duty EVs [19,20].
In this work, we extend the previous study to a broader electrified
mobility sector which includes heavy-duty electrified vehicles. More-
over, we specify the electric fleets into more detailed component groups
to consider the impact of human-assigned charging behavior versus
smart-assigned behavior for human-driven trucks (HTs). The primary
objectives of this work include:

• Development of a new method that can simulate the future elec-
trified and automated freight transportation systems and quantify
the national impact of electrified mobility-grid interactions.

• Analyze the impact of truck electrification, automation, and
charging assignment on grid operation, charging infrastructure
assignment, cost of trucks, fleet size, environmental benefits, etc.

The rest of the paper is organized as follows: Section 2 introduces
the approaches used for this benefit analysis, Section 3 introduces the
extended GEM modeling, Section 4 presents and discusses the results
of our study, and finally, Section 5 provides a conclusion.

2. Approach

This work expands on the development of an optimization model
that simultaneously solves the cost-minimizing dispatch of electrified
heavy-duty vehicle fleets for operation and charging as well as the
operation of the electricity system in the United States. Specifically,
this optimization model can examine: (1) the allocation of heavy-duty
autonomous and electric vehicles (HAEVs) to serve goods-delivery;
(2) the investment and construction of a HAEV fleet and supporting
charging infrastructure; and (3) the economic dispatch of electric power
plants for the US bulk electricity grid. The power sector was included
by coupling GEM to the Grid Operation Optimized Dispatch (GOOD)
electricity model [21]. This combined model treats the size of the HAEV
fleet and the amount of charging infrastructure as continuous decision
variables (relaxing the problem from mixed-integer convex optimiza-
tion to quadratic programming), allowing for heterogeneous vehicle
ranges and charger levels. The model minimizes the total system costs
(i.e., operating costs and capital costs) by choosing the timing of vehicle
charging subject to several constraints: mobility demand is always
served, energy is always conserved, and those generation assets on the
grid are dispatched in merit order. Heavy-duty autonomous and electric
vehicles (HAEVs) fleet planning costs are simultaneously minimized by
amortizing the cost of the fleet and charging infrastructure to a daily
period.

2.1. GEM

The Grid-integrated Electric Mobility (GEM) model is an open-
source modeling platform developed by researchers at Lawrence Berke-
ley National Laboratory, UC Davis, and UC Berkeley [20]. This model-
ing system simulates mobility and electricity operations on a national
scale. The framework of GEM is unique in that it optimizes a fully
autonomous, electric, and shared mobility system while dynamically
accounting for high-fidelity grid models. The first version GEM model
mainly focuses on the operation of light-duty vehicles. In this work, we
are extending this GEM model to a broader application that considers
freight behaviors. The overall workflow of the expanded GEM model
developed in this paper is summarized in Fig. 1 and the expanded
GEM platform (GEM v2.0) can be found in [22]. This expanded GEM

model co-optimizes the complete electrified mobility system and the
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Fig. 1. Extended Grid-Integrated Electric Mobility (GEM) model processing workflow.
grid operation. The model consists of three types of modules: (1)
Simulation assumption definition module, where we use the Routing
and Infrastructure for Shared Electric vehicles (RISE) model to generate
correction factors over a national scale and define the basic simula-
tion assumptions for the GEM model based on data sources including
StreetLight, Census, and other literature; (2) Grid optimization module,
where we use the grid operation optimized dispatch (GOOD) model
to calculate the power grid operation and the generator capacity, fuel
types, grid costs, and other grid-related parameters using EPA NEEDs &
EGRID data; (3) electrified mobility system, which is used for mobility
sector charging and travel behavior modeling. This module is then
divided into three mobility sectors: micro-mobility, passenger vehicles,
and freight vehicles. For the micro-mobility sector, we use the national
household travel survey (NHTS), the California household travel survey
(CHTS), and ride-share data to estimate the car to e-bike shifting trip
demand and charging demand. For passenger vehicles, we use the
EVI-Pro tool with NHTS, CHTS, and ride share data to estimate the
charging demand and trip demand for different vehicle classes (shared
automated, shared human-driven, private automated, private human-
driven). For freight vehicles, we use the Medium and Heavy-Duty
Electric Vehicle Infrastructure — Load Operations and Deployment
(HEVI-LOAD) tool with California Statewide Travel Demand Model
(CSTDM/CSFFM) to estimate the charging demand and trip demand for
freight vehicle classes (automated, human-driven). Using these three
modules we can co-optimize the grid with the electrified mobility
system under national scale assumptions and obtain the optimal mobil-
ity system and grid outputs including optimal fleet distribution, fleet
mobility dispatch, charger distribution/dispatch, generator dispatch,
overall costs, etc. Then these results are used for electrified mobility
benefit analysis under different vehicle electrification scenarios. The
novelty of this work compared to GEM v1.0 is that a more sophis-
ticated mobility system is considered with multiple mobility sectors
(including HDV, micro-mobility sector, human-driving LDV/HDVs, and
ride-sharing). This expanded model will better summarize the electric
mobility system operations and costs under a more comprehensive
mobility electrification scenario. In this work we analyze the cost–
benefit impact of HDVs under a joint operation/optimization scenario
of all mobility sectors, whereas GEM v1.0 focused on the LDV-related
cost–benefit analysis under a passenger vehicle only operation scenario.

2.2. HEVI-LOAD

HEVI-LOAD is a modeling tool developed by Lawrence Berkeley
National Laboratory to project the state-wide charging infrastructure
3

needed to accommodate the growing number of medium- and heavy-
duty electric vehicles. To accelerate the decarbonization of medium
and heavy-duty (MD/HD) vehicles in California and other states in
the United States, HEVI-LOAD projects the number, type, and location
of chargers and the related electric grid supply requirements to sup-
port the new charging stations. HEVI-LOAD consists of two analytical
approaches to determine the load profiles and charging infrastruc-
ture needs: (1) the top-down approach that assesses the county-level
charging load profile and infrastructure scenarios, and (2) the bottom-
up approach that incorporates more granular (temporal, spatial, and
duty-cycle-specific) behaviors of a variety of MDHD vehicles into the
agent-based activity simulations for optimal charging infrastructure
siting and sizing. Fig. 2 shows the preliminary charging load profile
analysis for a variety of MDHDs in California, in 2030.

3. Problem formulation

In the previous GEM model, the light-duty vehicles (LDVs) were
modeled and the optimization problem has been defined under an
LDV framework [19]. In this work, we have extended the LDV GEM
modeling to a more comprehensive optimization model that includes
LDVs, and HDVs. The dimensions of the model include time, 𝑡, mobility
region 𝑟, grid region 𝑖, LDV battery size 𝑏, HDV battery size 𝑏𝐻 , LDV
charger level 𝑙, HDV charger level 𝑙𝐻 , LDV trip distance 𝑑, HDV trip
distance 𝑑𝐻 , and electricity generator 𝑔. The model is a quadratically
constrained program and can be efficiently solved with a second-order
cone programming solver (Cplex).

Note that the scale of the GEM framework is for the entire United
States, where we divided the US into 13 mobility regions: East-South-
Central (ESC), West-South-Central (WSC), Mountain (MTN), Pacific
(PAC), New England (NE), Mid-Atlantic (MAT), South Atlantic (SAT),
East-North-Central (ENC), West-North-Central (WNC), California (CA),
Florida (FL), New York (NY), and Texas (TX). Each of these regions
is divided into rural and urban, making an overall 26 regions. The
modeling of each mobility sector and the grid sector are aggregated into
these regions. On this scale of modeling, some detailed components are
ignored for simplicity.

3.1. Objective function

As described in the main body of this article and previous work [19],
the objective function minimizes the amortized daily cost of the fleet
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Fig. 2. Example Charging load profile of different types of electric trucks from HEVI-LOAD for California, 2030.
and infrastructure, fleet operation, and electricity grid operation.

min 𝑍 =
∑

𝑟

[

∑

𝑡

(

𝐶𝑑𝑡𝑟 + 𝐶
𝑚
𝑡𝑟
)

+ 𝑛𝐶𝑐𝑟 + 𝑛𝐶
𝑣
𝑟

]

+
∑

𝑔,𝑡

(

𝐺𝑔𝐶
𝑔
𝑔

)

+
∑

𝑖,𝑡,𝑖′

(

𝑇𝑖,𝑡,𝑖′𝐶
𝑡
𝑖,𝑡,𝑖′

)

(1)

where 𝐶𝑑𝑡𝑟 is the demand charge or capacity cost to use the grid and 𝐶𝑚𝑡𝑟
is vehicle maintenance cost in hour 𝑡 and mobility region 𝑟, 𝐶𝑐𝑟 is the
amortized daily charging infrastructure cost, 𝐶𝑣𝑟 is the amortized daily
fleet cost, 𝑛 is the number of days in the simulation time horizon, 𝐺𝑔 is
the electricity produced by generator 𝑔, 𝐶𝑔𝑔 is the cost of producing a
unit of energy by generator 𝑔, 𝑇𝑖,𝑡,𝑖′ is the electricity transmitted from
grid region 𝑖 to grid region 𝑖′, and 𝐶 𝑡𝑖,𝑡,𝑖′ are transmission wheeling costs.

The objective is subject to several constraints as described in the
following section.

3.2. Constraints

Vehicle Maintenance Cost: mileage-dependent vehicle mainte-
nance.

𝐶𝑚𝑡𝑟 =
∑

𝑏,𝑑
𝛽𝑣𝑉

𝑚
𝑏𝑑𝑡𝑟𝜈𝑑𝑡𝑟 +

∑

𝑏𝐻 ,𝑑𝐻
𝛽𝐻𝑣 𝑉

𝑚𝐻
𝑏𝐻𝑑𝐻 𝑡𝑟

𝜈𝐻
𝑑𝐻 𝑡𝑟

(2)

where 𝛽𝑣, 𝛽𝐻𝑣 are the per-mile vehicle maintenance costs for LDVs
and HDVs, 𝑉 𝑚

𝑏𝑑𝑡𝑟, 𝑉
𝑚𝐻
𝑏𝐻𝑑𝐻 𝑡𝑟

are the number of vehicles of types 𝑏, 𝑏𝐻

serving mobility demand of trip length 𝑑, 𝑑𝐻 in hour 𝑡 and region 𝑟,
and 𝜈𝑑𝑡𝑟, 𝜈𝐻𝑑𝐻 𝑡𝑟 are the average speeds of the vehicles driving trips of

length 𝑑, 𝑑𝐻 . Costs associated with cleaning and service are included
in maintenance. Note that all the terms with a superscript 𝐻 are
associated with the HDV components respectively in this section of the
constraint expression.

Demand Charge Cost: cost of grid capacity.

𝐶𝑑𝑡𝑟 = 𝑃𝑚𝑎𝑥𝑟 𝛽𝑟∕30.5∕24 (3)

𝑃𝑚𝑎𝑥𝑟 is the maximum power demand over the time horizon, 𝛽𝑟 is
the average demand charge for the region ($/kW/month), and 30.5 and
24 convert the monthly demand charge into an hourly value which is
summed over all hours in the simulation in the objective function.

Infrastructure Cost:

𝐶𝑐𝑟 =
∑

𝑁𝑙𝑟𝛾𝑙𝜃
𝑐
𝑙 +

∑

𝑁𝐻
𝑙𝑟 𝛾

𝐻
𝑙𝐻
𝜃𝑐𝐻𝑙 (4)
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𝑙 𝑙𝐻
where 𝑁𝑙𝑟, 𝑁𝐻
𝑙𝑟 are the number of chargers of power rating 𝑙, 𝑙𝐻 in the

region 𝑟, 𝛾𝑙 is the power capacity of the charger (kW), and 𝜃𝑐𝑙 , 𝜃
𝑐𝐻
𝑙 are

the amortized daily charger cost ($/kW):

𝜃𝑐𝑙 =
𝜙𝑐𝑙 𝑟(1 + 𝑑𝑟)

𝐿𝑐

(1 + 𝑑𝑟)𝐿
𝑐 − 1

(5)

𝜃𝑐𝐻𝑙 =
𝜙𝑐𝐻𝑙 𝑟(1 + 𝑑𝑟)𝐿

𝑐𝐻

(1 + 𝑑𝑟)𝐿
𝑐𝐻 − 1

(6)

where 𝜙𝑐𝑙 , 𝜙
𝑐𝐻
𝑙 are the capital costs of the charger of levels 𝑙, 𝑙𝐻 , 𝐿𝑐 , 𝐿𝑐𝐻

are the lifetime of the charger in days, and 𝑑𝑟 is the daily discount rate.

Fleet Cost: in this constraint, battery costs are considered separately
from the rest of the vehicle.

𝐶𝑣𝑟 =
∑

𝑏
𝑉 ∗
𝑏𝑟(𝜃

𝑣 + 𝜃𝑏𝐵𝑏) +
∑

𝑏𝐻
𝑉 ∗𝐻
𝑏𝐻 𝑟

(𝜃𝑣𝐻 + 𝜃𝑏𝐻𝐵𝐻𝑏 ) (7)

where 𝑉 ∗
𝑏𝑟, 𝑉

∗𝐻
𝑏𝐻 𝑟

are the fleet size for LDVs and HDVs, 𝜃𝑣, 𝜃𝑣𝐻 are
the amortized daily vehicle costs (without a battery), 𝜃𝑏, 𝜃𝑏𝐻 are the
amortized daily battery costs ($/kWh), 𝐵𝑏, 𝐵𝐻𝑏 are the battery capacity
(kWh), respectively.

𝜃𝑣 = 𝜓𝑓𝑟

[

𝜙𝑣𝑜𝑚 +
𝜙𝑣𝑟(1 + 𝑟)𝐿𝑣

(1 + 𝑟)𝐿𝑣 − 1

]

(8)

𝜃𝑣𝐻 = 𝜓𝑓𝐻𝑟

[

𝜙𝑣𝐻𝑜𝑚 +
𝜙𝑣𝐻 𝑟(1 + 𝑟)𝐿𝑣𝐻

(1 + 𝑟)𝐿𝑣𝐻 − 1

]

(9)

𝜃𝑏 = 𝜓𝑏𝑟

[

𝜙𝑏𝑟(1 + 𝑟)𝐿𝑏

(1 + 𝑟)𝐿𝑏 − 1

]

(10)

𝜃𝑏𝐻 = 𝜓𝑏𝐻𝑟

[

𝜙𝑏𝐻 𝑟(1 + 𝑟)𝐿𝑏𝐻

(1 + 𝑟)𝐿𝑏𝐻 − 1

]

(11)

where 𝜓𝑓𝑟 , 𝜓
𝑓𝐻
𝑟 are the fleet spatial mismatch correction factors (see

Bauer et al. [23]), 𝜙𝑣𝑜𝑚, 𝜙𝑣𝐻𝑜𝑚 are the daily fixed O&M costs for the
vehicle, 𝜙𝑣, 𝜙𝑣𝐻 are the capital costs of the vehicles, and 𝐿𝑣, 𝐿𝑣𝐻 are
the lifetimes of the vehicles in days. And where 𝜓𝑏𝑟 , 𝜓𝑏𝐻𝑟 are the battery
spatial mismatch correction factors (see Bauer et al. [23]), 𝜙𝑏, 𝜙𝑏𝐻 𝑟 are
the capital costs of the battery ($/kWh) and 𝐿𝑏, 𝐿𝑏𝐻 are the lifetimes
of the battery in days.
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Demand Allocation: mobility demand must be served by some com-
position of vehicles.
∑

𝑏
𝐷𝑏𝑑𝑡𝑟 = 𝐷𝐷𝑑𝑡𝑟 (12)

∑

𝑏𝐻
𝐷𝐻
𝑏𝐻𝑑𝐻 𝑡𝑟

= 𝐷𝐷𝐻
𝑑𝐻 𝑡𝑟

(13)

where 𝐷𝐷𝑑𝑡𝑟, 𝐷𝐷𝐻
𝑑𝐻 𝑡𝑟

are exogenous demands in hour 𝑡 for passenger
ehicles (LDVs) and trucks (HDVs).

nergy to Meet Demand: the energy consumed by the fleet is a
unction of the number of trips served, and the conversion efficiency
f the vehicles.

𝑏𝑑𝑡𝑟 =
𝐷𝑏𝑑𝑡𝑟𝜓𝑐ℎ𝑑𝑑𝑟 𝜓𝑐𝑑𝑑𝑟 𝜂𝑏𝜌𝑑

𝜎𝑑
(14)

𝐸𝐻
𝑏𝐻𝑑𝐻 𝑡𝑟

=
𝐷𝐻
𝑏𝐻𝑑𝐻 𝑡𝑟

𝜓𝑐ℎ𝑑𝑑𝐻𝑟 𝜂𝐻
𝑏𝐻
𝜌𝐻
𝑑𝐻

𝜎𝐻
𝑑𝐻

(15)

where 𝐸𝑏𝑑𝑡𝑟, 𝐸𝐻𝑏𝐻𝑑𝐻 𝑡𝑟 are the energy consumed serving mobility of ve-

hicle types 𝑏, 𝑏𝐻 and trip length 𝑑, 𝑑𝐻 in hour 𝑡 and region 𝑟, 𝜎𝑑 , 𝜎𝐻𝑑𝐻
re the sharing factor or the average number of passengers per vehicle
rip, and the sharing factor for automated trucks mapped to per vehicle
rip from human-driven trucks (HTs), 𝜓𝑐ℎ𝑑𝑑𝑟 , 𝜓𝑐ℎ𝑑𝑑𝐻𝑟 are the charge

deadhead distance correction ratios (see [23]), 𝜓𝑐𝑑𝑑𝑟 is the customer
deadhead distance correction ratios, and 𝜂𝑏, 𝜂𝐻𝑏𝐻 is the conversion effi-
ciency of the vehicle power trains of LDVs and HDVs (kWh/mile). Note
that the sharing factor for trucks refers to the utilization of the truck
under a multi-task scenario. Compared with human-driven electrified
HDVs, the HAEVs fleet considers fewer human behavior constraints and
is likely to take more tasks per vehicle per day.

Vehicles Moving: the number of vehicles actively serving trips is

related to trip demand and the sharing factor. The terms 𝜌𝑑
𝛥𝑡𝜈𝑑𝑡

,
𝜌𝐻
𝑑𝐻

𝛥𝑡𝜈𝐻
𝑑𝐻 𝑡𝑟

orrect for the length of the time period, allowing, e.g. 1 vehicle to
erve 2 trips in an hour if the distance to speed ratio is 1/2.

𝑚
𝑏𝑑𝑡𝑟 =

𝐷𝑏𝑑𝑡𝑟𝜌𝑑𝜓𝑐𝑑𝑡𝑟
𝜎𝑑𝛥𝑡𝜈𝑑𝑡𝑟

(16)

𝑉 𝑚𝐻
𝑏𝐻𝑑𝐻 𝑡𝑟

=
𝐷𝐻
𝑏𝐻𝑑𝐻 𝑡𝑟

𝜌𝐻
𝑑𝐻

𝜎𝐻
𝑑𝐻
𝛥𝑡𝜈𝐻

𝑑𝐻 𝑡𝑟

(17)

where 𝜓𝑐𝑑𝑡𝑟 is the customer deadhead time correction ratio, and 𝛥𝑡 is
the length of the time period in hours.

Vehicles Charging: we relate the number of vehicles charging to the
power consumed by the capacity of each charger type.

𝑉 𝑐
𝑏𝑡𝑙𝑟 =

𝑃𝑏𝑡𝑙𝑟
𝜓𝑐ℎ𝑑𝑡𝑏,𝑙,𝑟 𝛾𝑙

(18)

𝑉 𝑐𝐻
𝑏𝐻 𝑡𝑙𝐻 𝑟

=
𝑃𝐻
𝑏𝐻 𝑡𝑙𝐻 𝑟

𝜓𝑐ℎ𝑑𝑡𝐻
𝑏𝐻 ,𝑙𝐻 ,𝑟

𝛾𝐻
𝑙𝐻

(19)

here 𝑉 𝑐
𝑡 are the number of vehicles charging in hour 𝑡, 𝜓𝑐ℎ𝑑𝑡𝑏,𝑙,𝑟 , 𝜓

𝑐ℎ𝑑𝑡𝐻
𝑏𝐻 ,𝑙𝐻 ,𝑟

are the charger deadhead time correction ratios, and 𝛾𝑙 , 𝛾𝐻𝑙𝐻 are the
charging rates (kW/charger).

Charging Upper Bound: we assume the batteries in the fleet start full
and therefore can only be replenished up to the cumulative amount
consumed by the previous hour.
𝑡

∑

𝑡=0

∑

𝑙
𝑃𝑏𝑡𝑙𝑟 ≤

𝑡−1
∑

𝑡=0

∑

𝑑
𝐸𝑏𝑑𝑡𝑟, ∀𝑏𝑡𝑟 (20)

𝑡
∑∑

𝑃𝐻
𝑏𝐻 𝑡𝑙𝐻 𝑟

≤
𝑡−1
∑∑

𝐸𝐻
𝑏𝐻𝑑𝐻 𝑡𝑟

, ∀𝑏𝐻 𝑡𝑟 (21)
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𝑡=0 𝑙𝐻 𝑡=0 𝑑
Charging Lower Bound: charging must keep up with consumption
as limited by the capacity of the batteries. Energy must be supplied by
charging in the previous hour to be used in the next hour.
𝑡−1
∑

𝑡=0

∑

𝑙
𝑃𝑏𝑡𝑙𝑟 ≥

𝑡
∑

𝑡=0

∑

𝑑
𝐸𝑏𝑑𝑡𝑟 − 𝑉

∗
𝑏𝑟𝐵𝑏, ∀𝑏𝑡𝑟 (22)

𝑡−1
∑

𝑡=0

∑

𝑙𝐻
𝑃𝐻
𝑏𝐻 𝑡𝑙𝐻 𝑟

≥
𝑡

∑

𝑡=0

∑

𝑑𝐻
𝐸𝐻
𝑏𝐻𝑑𝐻 𝑡𝑟

− 𝑉 ∗𝐻
𝑏𝐻 𝑟

𝐵𝐻
𝑏𝐻
, ∀𝑏𝐻 𝑡𝑟 (23)

No Charge At Start: the first hour of the day needs to have no
charging to allow for the convention that charging can only occur after
some energy is consumed by the fleet.

𝑃𝑏𝑡𝑙𝑟 = 0, 𝑡 = 0, ∀𝑏𝑙𝑟 (24)

𝑃𝐻
𝑏𝐻 𝑡𝑙𝐻 𝑟

= 0, 𝑡 = 0, ∀𝑏𝐻 𝑙𝐻 𝑟 (25)

Terminal State of Charge: the aggregate state of charge of batteries
must again be full at the end of the simulation.
∑

𝑡

∑

𝑙
𝑃𝑏𝑡𝑙𝑟 =

∑

𝑡

∑

𝑑
𝐸𝑏𝑑𝑡𝑟, ∀𝑏𝑟 (26)

∑

𝑡

∑

𝑙𝐻
𝑃𝐻
𝑏𝐻 𝑡𝑙𝐻 𝑟

=
∑

𝑡

∑

𝑑𝐻
𝐸𝐻
𝑏𝐻𝑑𝐻 𝑡𝑟

, ∀𝑏𝐻 𝑟 (27)

Fleet Dispatch: together vehicles serving trips, charging, and idle
cannot exceed the fleet size.
∑

𝑑
𝑉 𝑚
𝑏𝑑𝑡𝑟 + 𝑉

𝑖
𝑏𝑡𝑟 +

∑

𝑙
𝑉 𝑐
𝑏𝑡𝑙𝑟 ≤ 𝑉 ∗

𝑏𝑟 (28)

∑

𝑑𝐻
𝑉 𝑚𝐻
𝑏𝐻𝑑𝐻 𝑡𝑟

+ 𝑉 𝑖𝐻
𝑏𝐻 𝑡𝑟

+
∑

𝑙
𝑉 𝑐𝐻
𝑏𝐻 𝑡𝑙𝐻 𝑟

≤ 𝑉 ∗𝐻
𝑏𝐻 𝑟

(29)

Max Charging: vehicle charging cannot exceed the number of chargers.

∑

𝑏𝑑
𝑉 𝑐
𝑏𝑑𝑡𝑙 ≤ 𝑁𝑙𝑟 (30)

∑

𝑏𝐻𝑑𝐻
𝑉 𝑐𝐻
𝑏𝐻𝑑𝐻 𝑡𝑙𝐻

≤ 𝑁𝐻
𝑙𝐻 𝑟

(31)

where 𝑁𝑙𝑟 is the number of chargers charging at power level 𝑙 in the
region 𝑟.

Max Demand: this constraint relates the maximum power consumed
for each region to the power drawn in each time period. Because 𝑃𝑚𝑎𝑥𝑟 is
in the objective function, there will be no slack in the optimal solution,
ensuring it will be equal to the maximum power demanded by the fleet.

𝑃𝑚𝑎𝑥𝑟 ≥
∑

𝑏𝑙 𝑃𝑡𝑏𝑙𝑟
𝛥𝑡

+

∑

𝑏𝐻 𝑙𝐻 𝑃
𝐻
𝑡𝑏𝐻 𝑙𝐻 𝑟

𝛥𝑡
− 𝑃 𝑝𝑟𝑖𝑣𝑎𝑡𝑒𝑡,𝑟 − 𝑃𝐻𝑠𝑡,𝑟 ,−𝑃

𝐻ℎ𝑑𝑟
𝑡,𝑟 ∀𝑡𝑟 (32)

where 𝑃 𝑝𝑟𝑖𝑣𝑎𝑡𝑒𝑡,𝑟 is the power demanded by the personally owned light-
duty EV fleet, 𝑃𝐻𝑠𝑡,𝑟 , 𝑃

𝐻ℎ𝑑𝑟
𝑡,𝑟 are the power demanded by the human-

riven electric HDV fleet (smart/nonsmart charging)

uman-driven HDV Charging (smart assignment): The light-duty
ehicle personal vehicle charging constraints are derived in our previ-
us work [19]. The following four constraints represent the power and
nergy bounds on human-driven HDV with smart charging assignments.

𝑃𝐻𝑠𝑡,𝑟 ≥ P𝐻𝑠𝑡,𝑟 (33)

𝑃𝐻𝑠𝑡,𝑟 ≤ 𝑃
𝐻𝑠
𝑡,𝑟 (34)

𝑡
∑

′=1
𝑃𝐻𝑠𝑡′ ,𝑟 ≥ E𝐻𝑠𝑡,𝑟 (35)

𝑡
∑

𝑃𝐻𝑠𝑡′ ,𝑟 ≤ 𝐸
𝐻𝑠
𝑡,𝑟 (36)
𝑡′=1
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where P𝐻𝑠𝑡,𝑟 and 𝑃
𝐻𝑠
𝑡,𝑟 are the min and max power constraints on EV

harging, respectively; and E𝐻𝑠𝑡,𝑟 and 𝐸
𝐻𝑠
𝑡,𝑟 are the min and max cumula-

tive energy constraints on EV charging, respectively.

Human-driven HDV Charging (come and charge): the following
four constraints represent the power and energy bounds for the HDV
human-driven charging behavior.

𝑃𝐻ℎ𝑑𝑟𝑡,𝑟 ≥ P𝐻ℎ𝑑𝑟𝑡,𝑟 (37)

𝑃𝐻ℎ𝑑𝑟𝑡,𝑟 ≤ 𝑃
𝐻ℎ𝑑𝑟
𝑡,𝑟 (38)

𝑡
∑

𝑡′=1
𝑃𝐻ℎ𝑑𝑟𝑡′ ,𝑟 ≥ E𝐻ℎ𝑑𝑟𝑡,𝑟 (39)

𝑡
∑

𝑡′=1
𝑃𝐻ℎ𝑑𝑟𝑡′ ,𝑟 ≤ 𝐸

𝐻ℎ𝑑𝑟
𝑡,𝑟 (40)

where P𝐻ℎ𝑑𝑟𝑡,𝑟 and 𝑃
𝐻ℎ𝑑𝑟
𝑡,𝑟 are the min and max power constraints on the

uman-driven HDV charging, respectively; and E𝐻ℎ𝑑𝑟𝑡,𝑟 and 𝐸
𝐻ℎ𝑑𝑟
𝑡,𝑟 are

the min and max cumulative energy constraints on the human-driven
HDV charging, respectively. Note that for these two human-driven fleet
charging constraints, the upper and lower bounds of the energy and
charging power are generated from the HEVI-LOAD tool introduced in
Section 2.2.

Generation: The following three constraints represent power genera-
tion on the grid.
∑

𝑔,𝑖
𝐺𝑔,𝑡 + 𝜂𝑡𝑟𝑎𝑛𝑠

∑

𝑖′
𝑇𝑖′ ,𝑡,𝑖 −

∑

𝑖′
𝑇𝑖,𝑡,𝑖′ ≥ 𝑃 𝑜𝑡ℎ𝑒𝑟𝑖,𝑡 +

∑

𝑟𝜖𝑖
𝑃 𝑝𝑟𝑖𝑣𝑎𝑡𝑒𝑡,𝑟 +

∑

𝑟𝜖𝑖,𝑏,𝑙
𝑃𝑡𝑏𝑙𝑟 (41)

+
∑

𝑟𝜖𝑖
𝑃𝐻𝑠𝑡,𝑟 +

∑

𝑟𝜖𝑖
𝑃𝐻ℎ𝑑𝑟𝑡,𝑟 +

∑

𝑟𝜖𝑖,𝑏𝐻 ,𝑙𝐻
𝑃𝐻
𝑡𝑏𝐻 𝑙𝐻 𝑟

For all time steps 𝑡 and grid regions 𝑖, where 𝑃 𝑜𝑡ℎ𝑒𝑟𝑡,𝑟 is electricity
emand from non-mobility sources, and 𝜂𝑡𝑟𝑎𝑛𝑠 is the transmission loss
actor associated with inter-regional transfers.

. Results

In this section, the simulation results are presented and the benefit
nalysis is given based on the simulation study via the GEM model.
HDV charging load profile. Fig. 3 shows the overall charging load

rofile for a variety of scenarios of electrification and automation in the
eavy-duty sector (with/without automated charging assignment) with
he use of different charging levels. We assume for all the electrified
rucks, 𝑆 of them are HAEVs (𝑆 = 1, 25, 50, 75, 99%), and 1 − 𝑆 of them
re human-driven fleets (𝑃 = 1 − 𝑆). Among the human-driven fleets,
0% of the fleets use smart charging assignments, and the rest 50%
f the fleets simply charge when arriving at their destination. From
ig. 3, we observe that as the penetration of the HAEVs fleet increases,
he overall charging load profile results in a smoother fluctuation.
he peak daily charging load reduces by 47% with the penetration of
AEVs increasing from 1% to 99%. This reduction in fluctuation and
eak load is due to the smart job assignment and charging assignment
ssumptions for HAEVs. Moreover, we also observe that for the human-
riven electric HDV fleets, the smart charging assignment fleet will
esult in a lower charging demand in peak energy usage hours (we
ssumed the peak energy usage occurs from 5 pm to 10 pm). Whereas
he human charging assignment (come and charge) will have a higher
harging tendency during those times and a lower charging tendency
uring non-peak hours.
Number of chargers. Fig. 4(a) shows the number of chargers

eeded. As with fleet size, there are far more chargers when HAEVs are
ow (S = 1%) than in a counterfactual scenario of high penetration of
AEV fleet (S = 99%), reflecting much higher utilization among HAEV
hargers. With the HAEV penetration increases from 1% to 99%, the
verall number of chargers reduced from 396 million to 242 million,
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esulting in a reduction of 38%. The best number of HAEV chargers d
s decided from the GEM co-optimization framework in Eq. (4) with a
igher sharing tendency to reduce overall operational cost, whereas the
umber of chargers of human-driven electric trucks is obtained based
n human-driven electric truck charging demand and human charging
ehavior assumptions, indicating lower charging sharing factor. The
eduction of the charger is primarily due to the reduction of human-
riven electric HDV fleets-related chargers as those chargers have a
ower sharing factor compared with HAEVs-related chargers.
Peak load. Fig. 4(b) shows the grid peak load, which also decreases

ubstantially as the fraction of mobility demand met by HAEVs in-
reases: Peak demand is 159 GW at S = 1% and is 135 GW when S
= 99%. Based on this result, one can observe that with the increment
of HAEV fleet size, the overall peak load will reduce. However, the
peak load for individual fleet components may vary with different
HAEV penetration. This is a result of the joint optimization of charging
demand of all mobility sectors from Eq. (41). The relaxation of high
truck charging demand during peak hours may encourage the charging
for other fleet components in the electric mobility system to result in
an overall minimum operational cost.

Fleet size. Fig. 4(c) shows the optimal fleet size of all types of
ehicles in GEM modeling. We are particularly investigating the HAEVs
nd human-driven electrified HDVs in this study which decreases 47M
otal electric vehicles from the S = 1% case to the S = 99% case. This

reduction in fleet size is primarily due to the higher utilization in job
assignments for the HAEVs. The higher vehicle utilization is formulated
as sharing factor 𝜎𝐻

𝑑𝐻
in Eq. (15). HAEVs are likely to complete more

jobs per day compared with human-driven electric HDVs with the
relaxation of human-driven constraints.

Total costs. Fig. 4(d) shows the overall cost changes with the
raction of HAEVs increases. We can observe that the fleet cost and
nfrastructure cost for the human-driven electrified HDVs are decreas-
ng on a larger scale compared to the increment of fleet cost and
nfrastructure cost related to the increase of HAEV fleets. The overall
obility electrification related cost decreased from $1085 billion to
889 billion with the penetration of HAEVs increasing from 1% to 99%,
esulting in a reduction of overall cost by 18%. The reduction in overall
osts is a joint result of charging infrastructure reduction, peak load
eduction, and fleet size reduction, which reduces the infrastructure
ost, fleet cost, and power system operation cost, respectively.

.1. Discussion

With the growing trend of freight electrification, there is an urgent
eed to understand the potential benefits of future electrified freight
omponents. In this study, we analyzed the impact of freight electri-
ication and studied the influence of different electrified freight fleet
ompositions. In our analysis, we gradually increased the percentage
f HAEVs in electrified trucks and analyzed the potential impact on
he grid, cost and fleet sizes, etc. Our findings could serve as sug-
estions for freight electrification development. With the simulation
esults, we find that: (1) The use of heavy-duty autonomous electric
ehicles (HAEVs) with smart job assignment and charging assignment
o provide goods delivery has substantial benefits over using human-
riven electric trucks or gasoline trucks. The increased penetration of
utomated electric freight fleets within other types of electrified freight
leets from 1% to 99% will result in an overall cost reduction of 18.2%,
leet size reduction of 20.4%, and lower peak load reduction of 14.3%.;
2) Without charging time requirements, lower power charging stations
nd the use of smaller battery size trucks provide the benefit in terms
f infrastructure and fleet cost reduction, and lower grid operational
ost. The benefit of HAEV adoption in electrified truck fleets primarily
omes from the following aspects: (1) a higher sharing tendency of
harging infrastructure with optimized charger assignment; (2) optimal
harging scheduling making the HAEV charging demand shifting away
rom peak energy hours; and (3) optimized job assignment and higher

aily utilization of HAEVs.
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Fig. 3. Electrified HDV daily charging load profile across scenarios of AV/EV penetration.
Fig. 4. GEM system level outputs across scenarios of automation and electrification for HDVs.
5. Conclusion

The configuration of the freight system in which HAEVs serve goods
delivery has substantial benefits over one that relies on human-driven
electrified trucks or gasoline-powered vehicles. Overall, we demon-
strate that electrified freight automation increases operating efficiency
by reducing total costs and lowering emissions, which also increases
goods delivery within the transportation system. From an economic
standpoint, system costs are substantially reduced through higher ve-
hicle utilization (smart job assignment) and automation, while fuel
and operational costs remain much lower than those of gasoline/diesel
vehicles today. From an electric power grid operator’s perspective,
HAEVs can smooth out large amounts of the variability in electricity
generation, which substantially improves both the efficiency and emis-
sions rate of fossil generation while simultaneously better utilizing solar
and wind resources (thanks to the flexibility in charging times).
7

CRediT authorship contribution statement

Wanshi Hong: Conceptualization, Methodology, Formal analysis,
Writing – original draft, Visualization. Alan Jenn: Methodology, Soft-
ware, Resources. Bin Wang: Methodology, Resources, Project adminis-
tration.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:
Wanshi Hong reports financial support was provided by US Department
of Energy.

Data availability

The authors do not have permission to share data.



Applied Energy 335 (2023) 120760W. Hong et al.
Acknowledgment

We would like to thank Cong Zhang, Fan Tong, and Srinath Ravu-
laparthy for their help with modeling development. This article and
the work described were sponsored by the U.S. Department of Energy
(DOE) Vehicle Technologies Office (VTO) under the Vehicle Technolo-
gies Analysis Program. The following DOE Office of Energy Efficiency
and Renewable Energy (EERE) managers played important roles in
establishing the project concept, advancing implementation, and pro-
viding ongoing guidance: Raphael Isaac, Rachael Nealer, Jake Ward,
Katherine McMahon, Kelly Fleming, and Heather Croteau.

References

[1] Greenblatt Jeffery B, Shaheen Susan. Automated vehicles, on-demand mobility,
and environmental impacts. Curr Sustain/Renew Energy Rep 2015;2(3):74–81.

[2] Fulton Lewis M. Three revolutions in urban passenger travel. Joule
2018;2(4):575–8.

[3] Green Erin H, Skerlos Steven J, Winebrake James J. Increasing electric vehicle
policy efficiency and effectiveness by reducing mainstream market bias. Energy
Policy 2014;65:562–6.

[4] Forrest Kate, Mac Kinnon Michael, Tarroja Brian, Samuelsen Scott. Estimating
the technical feasibility of fuel cell and battery electric vehicles for the medium
and heavy duty sectors in california. Appl Energy 2020;276:115439.

[5] Stumpf Rob. Walmart buys 30 more tesla semis, aims to electrify entire fleet by
2028. 2018.

[6] U.S. energy information administration - EIA - independent statistics and analysis.
[7] Stephens T S, Gonder Jeff, Chen Yuche, Lin Z, Liu C, Gohlke D. Estimated

bounds and important factors for fuel use and consumer costs of connected and
automated vehicles. Technical report NREL/TP–5400-67216, 1334242, 2016.

[8] Simpson Andrew. Cost-benefit analysis of plug-in hybrid electric vehicle technol-
ogy. Technical report, Golden, CO (United States): National Renewable Energy
Lab.(NREL); 2006.

[9] Pesaran Ahmad, Markel Tony. Battery requirements and cost-benefit analysis
for plug-in hybrid vehicles (presentation). Technical report, Golden, CO (United
States): National Renewable Energy Lab.(NREL); 2007.
8

[10] Lajunen Antti. Energy consumption and cost-benefit analysis of hybrid and
electric city buses. Transp Res C 2014;38:1–15.

[11] Sarma Upasana, Ganguly Sanjib. Modelling and cost-benefit analysis of PEM
fuel-cell-battery hybrid energy system for locomotive application. In: 2018
technologies for smart-city energy security and power. ICSESP, IEEE; 2018, p.
1–5.

[12] Ito Yutaka, Managi Shunsuke. The potential of alternative fuel vehicles: A
cost-benefit analysis. Res Transp Econ 2015;50:39–50.

[13] Jie YANG, Fan GUO, Zijian CAO. Cost and benefit analysis of EV energy storage
through V2G. Energy Storage Sci Technol 2020;9(S1):45.

[14] Sofia Daniele, Gioiella Filomena, Lotrecchiano Nicoletta, Giuliano Aristide. Cost-
benefit analysis to support decarbonization scenario for 2030: A case study in
Italy. Energy Policy 2020;137:111137.

[15] Hu Junjie, Morais Hugo, Sousa Tiago, Lind Morten. Electric vehicle fleet
management in smart grids: A review of services, optimization and control
aspects. Renew Sustain Energy Rev 2016;56:1207–26.

[16] Tong Fan, Jaramillo Paulina, Azevedo Inês ML. Comparison of life cycle green-
house gases from natural gas pathways for medium and heavy-duty vehicles.
Environ Sci Technol 2015;49(12):7123–33.

[17] Gao Zhiming, Lin Zhenhong, Franzese Oscar. Energy consumption and cost
savings of truck electrification for heavy-duty vehicle applications. Transp Res
Rec 2017;2628(1):99–109.

[18] Klauenberg Jens, Rudolph Christian, Zajicek Jürgen. Potential users of electric
mobility in commercial transport – identification and recommendations. Transp
Res Procedia 2016;16:202–16.

[19] Sheppard Colin JR, Jenn Alan T, Greenblatt Jeffery B, Bauer Gordon S,
Gerke Brian F. Private versus shared, automated electric vehicles for US personal
mobility: energy use, greenhouse gas emissions, grid integration, and cost
impacts. Environ Sci Technol 2021;55(5):3229–39.

[20] Sheppard Colin, Jenn Alan. Grid-integrated electric mobility model (GEM) v1. 0.
2021, https://github.com/LBNL-UCB-STI/gem.

[21] Jenn Alan, Clark-Sutton Kyle, Gallaher Michael P, Petrusa Jeffrey. Environmental
impacts of extreme fast charging. Environ Res Lett 2020.

[22] Hong Wanshi, Jenn Alan, Wang Bin. Grid-integrated electric mobility model
(GEM) v2. 0. 2022, https://github.com/hongwanshi/gem-hdv.

[23] Bauer Gordon S, Greenblatt Jeffery B, Gerke Brian F. Cost, energy, and envi-
ronmental impact of automated electric taxi fleets in manhattan. Environ Sci
Technol 2018;52(8):4920–8.

http://refhub.elsevier.com/S0306-2619(23)00124-1/sb1
http://refhub.elsevier.com/S0306-2619(23)00124-1/sb1
http://refhub.elsevier.com/S0306-2619(23)00124-1/sb1
http://refhub.elsevier.com/S0306-2619(23)00124-1/sb2
http://refhub.elsevier.com/S0306-2619(23)00124-1/sb2
http://refhub.elsevier.com/S0306-2619(23)00124-1/sb2
http://refhub.elsevier.com/S0306-2619(23)00124-1/sb3
http://refhub.elsevier.com/S0306-2619(23)00124-1/sb3
http://refhub.elsevier.com/S0306-2619(23)00124-1/sb3
http://refhub.elsevier.com/S0306-2619(23)00124-1/sb3
http://refhub.elsevier.com/S0306-2619(23)00124-1/sb3
http://refhub.elsevier.com/S0306-2619(23)00124-1/sb4
http://refhub.elsevier.com/S0306-2619(23)00124-1/sb4
http://refhub.elsevier.com/S0306-2619(23)00124-1/sb4
http://refhub.elsevier.com/S0306-2619(23)00124-1/sb4
http://refhub.elsevier.com/S0306-2619(23)00124-1/sb4
http://refhub.elsevier.com/S0306-2619(23)00124-1/sb5
http://refhub.elsevier.com/S0306-2619(23)00124-1/sb5
http://refhub.elsevier.com/S0306-2619(23)00124-1/sb5
http://refhub.elsevier.com/S0306-2619(23)00124-1/sb7
http://refhub.elsevier.com/S0306-2619(23)00124-1/sb7
http://refhub.elsevier.com/S0306-2619(23)00124-1/sb7
http://refhub.elsevier.com/S0306-2619(23)00124-1/sb7
http://refhub.elsevier.com/S0306-2619(23)00124-1/sb7
http://refhub.elsevier.com/S0306-2619(23)00124-1/sb8
http://refhub.elsevier.com/S0306-2619(23)00124-1/sb8
http://refhub.elsevier.com/S0306-2619(23)00124-1/sb8
http://refhub.elsevier.com/S0306-2619(23)00124-1/sb8
http://refhub.elsevier.com/S0306-2619(23)00124-1/sb8
http://refhub.elsevier.com/S0306-2619(23)00124-1/sb9
http://refhub.elsevier.com/S0306-2619(23)00124-1/sb9
http://refhub.elsevier.com/S0306-2619(23)00124-1/sb9
http://refhub.elsevier.com/S0306-2619(23)00124-1/sb9
http://refhub.elsevier.com/S0306-2619(23)00124-1/sb9
http://refhub.elsevier.com/S0306-2619(23)00124-1/sb10
http://refhub.elsevier.com/S0306-2619(23)00124-1/sb10
http://refhub.elsevier.com/S0306-2619(23)00124-1/sb10
http://refhub.elsevier.com/S0306-2619(23)00124-1/sb11
http://refhub.elsevier.com/S0306-2619(23)00124-1/sb11
http://refhub.elsevier.com/S0306-2619(23)00124-1/sb11
http://refhub.elsevier.com/S0306-2619(23)00124-1/sb11
http://refhub.elsevier.com/S0306-2619(23)00124-1/sb11
http://refhub.elsevier.com/S0306-2619(23)00124-1/sb11
http://refhub.elsevier.com/S0306-2619(23)00124-1/sb11
http://refhub.elsevier.com/S0306-2619(23)00124-1/sb12
http://refhub.elsevier.com/S0306-2619(23)00124-1/sb12
http://refhub.elsevier.com/S0306-2619(23)00124-1/sb12
http://refhub.elsevier.com/S0306-2619(23)00124-1/sb13
http://refhub.elsevier.com/S0306-2619(23)00124-1/sb13
http://refhub.elsevier.com/S0306-2619(23)00124-1/sb13
http://refhub.elsevier.com/S0306-2619(23)00124-1/sb14
http://refhub.elsevier.com/S0306-2619(23)00124-1/sb14
http://refhub.elsevier.com/S0306-2619(23)00124-1/sb14
http://refhub.elsevier.com/S0306-2619(23)00124-1/sb14
http://refhub.elsevier.com/S0306-2619(23)00124-1/sb14
http://refhub.elsevier.com/S0306-2619(23)00124-1/sb15
http://refhub.elsevier.com/S0306-2619(23)00124-1/sb15
http://refhub.elsevier.com/S0306-2619(23)00124-1/sb15
http://refhub.elsevier.com/S0306-2619(23)00124-1/sb15
http://refhub.elsevier.com/S0306-2619(23)00124-1/sb15
http://refhub.elsevier.com/S0306-2619(23)00124-1/sb16
http://refhub.elsevier.com/S0306-2619(23)00124-1/sb16
http://refhub.elsevier.com/S0306-2619(23)00124-1/sb16
http://refhub.elsevier.com/S0306-2619(23)00124-1/sb16
http://refhub.elsevier.com/S0306-2619(23)00124-1/sb16
http://refhub.elsevier.com/S0306-2619(23)00124-1/sb17
http://refhub.elsevier.com/S0306-2619(23)00124-1/sb17
http://refhub.elsevier.com/S0306-2619(23)00124-1/sb17
http://refhub.elsevier.com/S0306-2619(23)00124-1/sb17
http://refhub.elsevier.com/S0306-2619(23)00124-1/sb17
http://refhub.elsevier.com/S0306-2619(23)00124-1/sb18
http://refhub.elsevier.com/S0306-2619(23)00124-1/sb18
http://refhub.elsevier.com/S0306-2619(23)00124-1/sb18
http://refhub.elsevier.com/S0306-2619(23)00124-1/sb18
http://refhub.elsevier.com/S0306-2619(23)00124-1/sb18
http://refhub.elsevier.com/S0306-2619(23)00124-1/sb19
http://refhub.elsevier.com/S0306-2619(23)00124-1/sb19
http://refhub.elsevier.com/S0306-2619(23)00124-1/sb19
http://refhub.elsevier.com/S0306-2619(23)00124-1/sb19
http://refhub.elsevier.com/S0306-2619(23)00124-1/sb19
http://refhub.elsevier.com/S0306-2619(23)00124-1/sb19
http://refhub.elsevier.com/S0306-2619(23)00124-1/sb19
https://github.com/LBNL-UCB-STI/gem
http://refhub.elsevier.com/S0306-2619(23)00124-1/sb21
http://refhub.elsevier.com/S0306-2619(23)00124-1/sb21
http://refhub.elsevier.com/S0306-2619(23)00124-1/sb21
https://github.com/hongwanshi/gem-hdv
http://refhub.elsevier.com/S0306-2619(23)00124-1/sb23
http://refhub.elsevier.com/S0306-2619(23)00124-1/sb23
http://refhub.elsevier.com/S0306-2619(23)00124-1/sb23
http://refhub.elsevier.com/S0306-2619(23)00124-1/sb23
http://refhub.elsevier.com/S0306-2619(23)00124-1/sb23

	Electrified autonomous freight benefit analysis on fleet, infrastructure and grid leveraging Grid-Electrified Mobility (GEM) model
	Introduction
	Approach
	GEM
	HEVI-LOAD

	Problem Formulation
	Objective Function
	Constraints

	Results
	Discussion

	Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgment
	References


